首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The investigated alumina forming FeNiCrAl model alloy shows protective oxidation behavior in dry and humid environment at 900 °C. Hence, this type of alloy may replace conventional chromia forming austenitic alloys in aggressive oxidizing/reducing environments. A detailed investigation of the oxide scale development reveals a complex initial scale development. Firstly, at alloy grain boundaries, a thin Al rich oxide forms which is replaced by transient alumina platelets in dry and equiaxed α-Al2O3 crystallites in humid atmosphere. The scale at alloy grain centers develops via a layered scale of external chromia:Fe/Ni metal inclusions:internal alumina to a layered external spinel:internal alumina scale in dry atmosphere. In humid condition an additional oxide feature appears on the center of large alloy grains i.e. thick oxide protrusions. Despite the initially different phase compositions a continuous protective α-Al2O3 scale forms both atmospheres.  相似文献   

2.
Abstract

The isothermal oxidation behaviour of Ni-7% Al and Ni-12·5% Al in 1atm oxygen at 800, 1000 and 1200°c has been studied by thermogravimetric methods, optical metallography, electron probe microanalysis and scanning electron microscopy. The ease of formation of an initially complete, protective, external α-Al2O3 scale is greater the higher the alloy aluminium content and the higher the temperature. Once developed, this external α-Al2O3 scale tends to fail mechanically in localised regions, the subsequent oxidation behaviour depending upon the composition of the exposed alloy. Under conditions favouring breakaway, Ni-7% Al yields rapid oxidation rates as NiO-rich nodules are formed on the exposed alloy substrate, although the rate declines later as a healing α-Al2O3 layer develops at their bases. If the α-Al2O3 fails on Ni-12·5% Al, the aluminium content of the revealed alloy is still high enough to ensure rapidproduction of a new external α-Al2O3 layer.  相似文献   

3.
A Rapidly Solidified Powder (RSP) metallurgical FeCrAl alloy, Kanthal APMT, was exposed in dry and humid O2 for 72 h at 900–1,100 °C. The formed oxide scales were characterized using gravimetry in combination with advanced analysis techniques (SEM, EDX, TEM, XRD, AES and SIMS). The oxide scales were at all exposures composed of two-layered α-Al2O3 scales exhibiting a top layer of equiaxed grains and a bottom layer containing elongated grains. A Cr-rich zone, originating in the native oxide present before exposure, separated these two layers. The top α-Al2O3 layer is suggested to have formed by transformation of outwardly grown metastable alumina, while the inward-grown bottom α-Al2O3 layer had incorporated small Zr-, Hf- and Ti-rich oxide particles present in the alloy matrix. The scale also contained larger Y-rich oxide particles. Furthermore, in the temperature range studied, the presence of water vapour accelerated alloy oxidation somewhat and affected scale morphology.  相似文献   

4.
The development of the oxide scale on model Fe20Cr5Al-type alloys unmodified and containing implanted yttrium was studied in oxygen-dominated atmosphere at 1,100 °C for up to 1 h. A two-stage-oxidation exposure was applied with the use of 18O2 as a tracer. The choice of the exposure durations ensured the possibility to follow the consecutive stages of scale development. The oxidized samples were characterized using SEM (morphology); PLS (phase composition), and SIMS (elemental distributions). The obtained results are discussed in terms of the mechanism of the development of protective α-Al2O3 scale and the effect of the additions on this process taking into account the necessity of distinguishing the mechanism and kinetics of the scale evolution. Similar scale evolution stages were found on both studied materials and in both cases the protective α-Al2O3 scale developed rapidly, already after the exposure for 3 min. Implanted yttrium appeared to have a negligible effect on the evolution of the scale. It only slightly retarded the evolution which can be attributed rather to a kinetic effect than to mechanistic one. However, the mechanical failure of the scales via formation of cracks at the asperities of convolutions occurred on the yttrium-implanted alloy but not on the non-implanted one.  相似文献   

5.
《Acta Materialia》2007,55(4):1427-1439
The mechanism of oxidation protection of NiCoCrAlY overlay coatings on the orthorhombic Ti2AlNb-based alloy (O alloy) Ti–22Al–26Nb (at.%) is described. While the bare alloy exhibited poor oxidation resistance at 800 °C, adding NiCoCrAlY coatings significantly improved the oxidation resistance. However, serious interdiffusion between the coatings and the substrate resulted in rapid degradation of the coating system. Several reaction layers were formed at the coating/substrate interface by interdiffusion, and non-protective scales mainly of Cr2O3 and TiO2 were formed due to the degradation of the coating. In order to solve this problem, an Al2O3/Al interlayer was sandwiched into the coating system as a diffusion barrier. The isothermal and cyclic oxidation protection of the multilayer coating system on the Ti–22Al–26Nb substrate was evaluated at 800 and 900 °C. The results indicated that the interdiffusion was much suppressed, and the duplex coating system demonstrated improved oxidation resistance on the Ti–22Al–26Nb substrate, with a thin and adherent protective α-Al2O3 scale forming on the surface.  相似文献   

6.
γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called “thermally grown oxide” (TGO). A layered oxide scale was established on a model γ-Ni–28Cr–11Al (at.%) alloy after isothermal oxidation for several minutes at 1100°C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.  相似文献   

7.
《Intermetallics》2007,15(10):1285-1290
The phase transformation of alumina formed during oxidation of β-NiAl coating prepared on M38G alloy by pack cementation was investigated. Oxidation experiments were conducted at 950 °C for various times from 2 to 180 min. The phase composition and microstructure of the oxide scales were investigated by using glancing angle XRD, AFM and SEM. The results showed that at the initial oxidation stage needle-like θ-Al2O3 was formed and then it covered the sample surface rapidly. The formation of α-Al2O3 grains beneath the θ-Al2O3 layer was favored by depletion of Al in the β-NiAl coating during oxidation. α-Al2O3 preferred growing on the top (ridge) of β-NiAl grains, which resulted in the formation of net-like α-Al2O3 inner layer. With increasing time, θ-Al2O3 transformed to α-Al2O3 gradually. After 180 min oxidation, most of θ-Al2O3 grains transformed into α-Al2O3. A mechanism of excessive voids' formation at the oxide/coating interface was also proposed in this paper.  相似文献   

8.
The transition behavior of an Al-rich amorphous oxide layer to an external Al2O3 layer on Fe–(4, 24)Cr–(6, 10)Al (at.%) alloys was investigated during heating to 1000 °C at a heating rate of 50 °C/min, by means of in situ high-temperature X-ray diffraction measurement and TEM observation. In the alloy containing 6Al, internal amorphous Al2O3 was initially developed below the Al-rich amorphous surface layer. The amorphous internal precipitates transformed to be crystalline and grew laterally with time. The internal precipitates subsequently connected with each other to form a continuous α-Al2O3 scale. In the case of 10Al alloy, an Al-rich amorphous layer transitioned to a crystalline α-Al2O3 layer from the interface between transient/amorphous layers during heating. The Al2O3 scale developed on high Al alloys contained Fe and Cr with relatively higher contents, but that formed on low Al alloy contained low Fe and Cr. The effect of Cr on promoting an external Al2O3 scale formation was found to be weaker for alloys with higher Al content compared to the alloys with lower Al content, if Al2O3 scale was directly transitioned from the amorphous layer.  相似文献   

9.
Ni–Al coating alloys, which are commonly used in gas turbine engines operating in marine environments, are highly susceptible to hot corrosion attack. The effect of alloy composition and exposure conditions on the development of a protective alumina scale, which is important for the hot corrosion resistance of the alloy, and how they affect the transition of alumina from the θ to the α polymorph have been evaluated. A series of Ni–Al model alloys with a base composition of Ni–36 at.% Al, and 5 at.% additions of Cr, Pt and Si were exposed in dry air and in air–10%H2O at 900 °C. The presence of water vapor in the gas led to higher oxidation rates and retarded the θ- to the α-Al2O3 transformation. The oxidation behavior of the alloys and the alumina polymorph which formed differed depending on the alloying element considered. Additions of Cr accelerated the θ to α transformation, while Pt and Si retarded it.  相似文献   

10.
Quadakkers  W. J.  Naumenko  D.  Wessel  E.  Kochubey  V.  Singheiser  L. 《Oxidation of Metals》2004,61(1-2):17-37
The growth rates of alumina scales formed on high-temperature alloys often show a strong deviation from classical parabolic kinetics, and frequently scale growth rates near to a cubic time dependence are observed. This is e.g. the case for most RE doped Fe–Cr–Al-alloys oxidized at temperatures in the range of 1000 to 1300°C. For a number of components made of Fe–Cr–Al alloys, which e.g. prevail in car catalyst carriers, gas burners or hot-gas filters, the detailed knowledge of the rate law governing scaling kinetics is an absolutely necessary requirement for a reliable prediction of the component lifetime and/or the materials application limits. It seems that for ideally gas-tight α-Al2O3 scales a near-cubic time dependence is more a rule than an exception, although the frequently used methods for evaluating measured oxidation data might lead to the erroneous conclusion that the scale growth is governed by a transient-oxidation stage followed by parabolic oxidation. Deviations from an ideal, near-cubic time dependence of the oxidation kinetics of the Fe–Cr–Al alloys are caused by scale cracking during thermal cycling and/or local inhomogenities in the alloy and/or the scale.  相似文献   

11.
Several researchers have studied the transformation of metastable aluminas (γ- and θ-) to α-Al2O3 but very little is known regarding alumina scales formed under water vapour and their transformation to α-Al2O3. Some results have indicated that water vapour increases the oxidation rate of alumina-scale forming coatings but others have found the opposite, that is, that under water vapour the oxidation rates decrease as either transition aluminas do not form or the transformation to α-Al2O3 is accelerated. In addition, it was found that χ-Al2O3 is the only oxide that forms at the initial stages of oxidation under 100 % steam on Fe–Al coatings at 650 °C. Under these conditions, this oxide is very protective, and slowly transforms onto α-Al2O3. A preliminary study of the transformation of χ- to α-Al2O3 at 900 °C under laboratory air was carried out. χ-Al2O3 was generated by a steam pre-treatment on slurry Fe aluminide coatings deposited on P92.  相似文献   

12.
Rapid formation of an α-Al2O3 scale on Fe–50 at.%Al by pure metal thin coatings of Ni, Al, Ti, Cr or Fe was investigated, and the effects of those elements on Al2O3-scale evolution were assessed. The oxidation behavior of samples with and without coatings could be divided into two groups: the samples with/without Ni and Al, and those with Ti, Cr and Fe. The mass gains of samples coated with Al and Ni were almost the same as that of non-coated Fe–50 at.%Al alloy. The mass gains of samples coated with Ti, Cr, and Fe were much lower than that of the Fe–50 at.%Al alloy. A stable α-Al2O3 scale was found to develop from the beginning of oxidation on the samples coated with Ti, Cr and Fe. However metastable θ-Al2O3 remained after long-time oxidation of non-coated and Ni- and Al-coated samples. The direct α-Al2O3 scale formation on the samples with Cr or Fe coatings was speculated to be due to sympathetic nucleation of α-Al2O3 on the surface of Al-supersaturated Fe2O3 for Fe-coated sample, and composition changes from (Cr,Al)2O3 to (Al,Cr)2O3 for the Cr-coated sample. Initial formation of an oxide having a corundum structure was inferred to provide a nucleation site for precipitation of α-Al2O3 without prior formation of a metastable Al2O3 scale.  相似文献   

13.
The early-stage oxidation behavior in air of Pt-modified γ′-Ni3Al-based alloys of composition (in at.%) Ni–22Al–30Pt with and without 0.5Hf was investigated in terms of oxidation kinetics, scale evolution and Al2O3 phase transformation. Oxidation exposures included heating to and short-term holds at 1,150 °C. Hafnium addition did not appear to affect microstructural evolution and growth rate of the oxide scales during heating to 1,150 °C; however, it was found that Hf delayed the metastable-to-α-Al2O3 phase transformation, thus allowing continued fast growth of oxide scale. After the transient oxidation stage of up to about 10 min (including heating time), Ni-rich metallic particles precipitated in the lower part of the metastable Al2O3 layer, due to a decrease in the oxygen potential resulting from scale evolution. The present results indicated that the period of oxide phase transformation was followed by the establishment of steady-state oxidation kinetics. However, the steady-state kinetics were different for the two alloy systems. Specifically, after complete phase transformation to α-Al2O3, rapid growth of oxide grains occurred on the Hf-free alloy; whereas, the oxide grain size remained small for the Hf-containing alloy. Such a difference of transformation and subsequent grain-growth behavior greatly affected oxide thickening kinetics.  相似文献   

14.
In the present study the isothermal oxidation behaviours of Ni-10Cr-5Al, Ni-20Cr-5Al and Ni-30Cr-5Al alloys were investigated. The alloys were oxidised in air for 50 h at 1000 °C. Analytical transmission electron microscopy was used to characterize the morphology, structure and composition of the oxide scale. The oxide formed adjacent to the alloy was α-Al2O3 such that the higher was the Cr content of the alloy the easier was its formation. The Ni-30Cr-5Al alloy formed a complete layer of α-Al2O3 in the initial stages of oxidation through ‘oxygen gettering’ by Cr. A decrease in scale thickness and an increase in scale adherence were observed with an increase in Cr content from 10 to 30 wt.%.  相似文献   

15.
An external ultrathin α-Al2O3 scale grown on the Ni-base alloy 602 CA during air oxidation at 800 °C was characterized by means of high-resolution TEM/EDX and electron diffraction. Alloy samples pre-oxidized at 800 °C were subsequently exposed at 1100, 1150 and 1200 °C for up to 100 h. Whereas the external alumina remained stable at 1100 °C, with the increasing exposure temperature, the pre-grown alumina scale tended to break down resulting in an external chromia scale accompanied by internal alumina precipitation. The transition from external to internal Al oxidation was investigated using SEM/EDX/EBSD. The critical Al depletion at the scale-alloy interface during the post-exposure at 1100–1200 °C was modeled using the CALPHAD-based thermodynamic-kinetic approach.  相似文献   

16.
Oxide-dispersed Fe-28at.% Al-2%Cr alloys were produced by a powder metallurgy technique followed by hot extrusion. A variety of stable oxides were added to the base alloy to assess the effect of these dopants on the oxidation behavior at 1200°C in air and O2. An Al2O3 dispersion flattened the α-Al2O3 scale, but produced none of the other reactive element effects and had an adverse influence on the long-term oxidation behavior. A Y2O3 dispersion improved the alumina scale adhesion relative to a Zr alloy addition at 1200 and 1300°C. However, the Y2O3 dispersion was not as effective in improving scale adhesion in Fe3Al as it is in FeCrAl. This inferior performance is attributed to a larger amount of interfacial void formation on ODS Fe3Al.  相似文献   

17.
The allotropic phase transformation behavior of Al2O3 scale formed on Ni–22Al–30Pt (in at.%) with and without 0.5Hf was investigated during short-term (i.e., 3?min dwell) cyclic oxidation at 1,150?°C in air. Hafnium addition did not appear to affect the oxidation rate in the early oxidation cycles, but it did delay the phase transformation from the metastable θ-Al2O3 structure to the stable α-Al2O3. Small dimples, which corresponded to α-Al2O3 grains, started to form on the Hf-free alloy after only three oxidation cycles; whereas, no apparent morphological change of the oxide scale surface was observed on the Hf-modified alloy. The transformation to α-Al2O3 was found to initiate at scale/alloy interface on the Hf-free alloy, but it initiated at gas/scale interface on the Hf-modified alloy. Depth profiling using glow discharge optical emission spectroscopy revealed that Hf enriched at the scale/alloy interface due to Hf rejection associated with the formation of an Al-depleted γ-layer, which has a low Hf solubility. Higher positive strain energy due to Hf solution in the metastable Al2O3 was inferred to be the main contributor to the delayed the transformation.  相似文献   

18.
A crack-free Al diffusion coating has been developed to improve the oxidation resistance of Ti22Al26Nb. It was produced by a two-step method; an Al film was deposited on the substrate alloy by arc ion plating followed by a diffusion process conducted at 873 K in pure Ar to form the Al diffusion coating. The two-step method lowers the temperature required to form the diffusion coating, which dramatically decreases the thermal stress developed in the coating and results in it being crack-free. The oxidation resistance of the non-coated Ti22Al26Nb alloy in isothermal and cyclic tests in air at 1073 K was poor, but the coated specimens possessed excellent oxidation resistance because a protective α-Al2O3 scale formed. The life of the Al diffusion coating greatly depends upon the rapid initial formation of a protective Al2O3 scale and interdiffusion between coating and substrate. Once the stable Al2O3 scale has formed and the composition changes from (Ti, Nb)Al3 into (Ti, Nb)Al2, the coating has a long life.  相似文献   

19.
Microstructural development during high-temperature oxidation of Ti2AlC below 1300 °C involves gradual formation of an outer discontinuous TiO2 layer and an inner dense and continuous α-Al2O3 layer. After heating at 1400 °C, an outer layer of mixed TiO2 and Al2TiO5 phases and a cracked α-Al2O3 inner layer were formed. After heating to 1200 °C and cooling to room temperature, two types of planar defect were identified in surface TiO2 grains: twins with (2 0 0) twin planes, and stacking faults bounded by partial dislocations. Formation of planar defects released the thermal stresses that had generated in TiO2 grains due to thermal expansion mismatch of the phases (TiO2, α-Al2O3 and Al2TiO5) in the oxide scale. After heating to 1400 °C and cooling to room temperature, crack propagation in TiO2 grains resulted from the thermal expansion mismatch of the phases in the oxide scale, the high anisotropy of thermal expansion in Al2TiO5 and the volume changes associated with the reactions during Ti2AlC oxidation. An atomistic oxidation mechanism is proposed, in which the growth of oxide scale is caused by inward diffusion of O2? and outward diffusion of Al3+ and Ti4+. The weakly bound Al leaves the Al atom plane in the layered structure of Ti2AlC, and diffuses outward to form a protective inner α-Al2O3 layer between 1100 and 1300 °C. However, the α-Al2O3 layer becomes cracked at 1400 °C, providing channels for rapid ingress of oxygen to the body, leading to severe oxidation.  相似文献   

20.
The oxidation behavior of Fe3Al and Fe3Al–Zr intermetallic compounds was tested in synthetic air in the temperature range 900–1200 °C. The addition of Zr showed a significant effect on the high-temperature oxidation behavior. The total weight gain after 100 h oxidation of Fe3Al at 1200 °C was around three times more than that for Fe3Al–Zr materials. Zr-containing intermetallics exhibited abnormal kinetics between 900 and 1100 °C, due to the presence and transformation of transient alumina into stable α-Al2O3. Zr-doped Fe3Al oxidation behavior under cyclic tests at 1100 °C was improved by delaying the breakaway oxidation to 80 cycles, in comparison to 5 cycles on the undoped Fe3Al alloys. The oxidation improvements could be related to the segregation of Zr at alumina grain boundaries and to the presence of Zr oxide second-phase particles at the metal–oxide interface and in the external part of the alumina scale. The change of oxidation mechanisms, observed using oxygen–isotope experiments followed by secondary-ion mass spectrometry, was ascribed to Zr segregation at alumina grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号