首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present work, is to assess the effect of tool material and cutting parameters on surface roughness of the supermet 718 Nickel-base superalloy, under dry cutting conditions and a constant nose radius (0.5 mm). The parameters investigated are cutting speed, feed rate, depth of cut and tool material. The tool materials used were the ceramic (Sandvik CC 680) and the CBN (Sandvik CB 50) inserts. These variables were investigated using a 2k factorial design.

The present work demonstrates a favorable effect for ceramic inserts on surface roughness, when compared with CBN inserts. The work also, showed that the feed rate has the dominant effect among the parameters studied on the surface roughness, irrespective of the tool material used.  相似文献   

2.
The objective of this study is to determine the effect of the surface roughness on the tensile strength perpendicular to the surface of medium density fiberboard (MDF) overlaid with polyvinyl chloride (PVC). The surfaces of the MDF panels were sanded with four different grit abrasives, 220, 240, 280 and 320-grit, to create different roughness values. The roughness of the panel surfaces were determined in accordance with ISO 4288. The MDF panels were laminated with polyvinyl chloride (PVC) using a polyurethane-based adhesive. A total of 70 samples having the dimensions of 50 × 50 mm from the panels were prepared based on EN 326-1. The universal test machine was used for tensile strength. The test results were statistically analyzed and it was found that the sanding process decreases the surface roughness of the MDF and as the grit size of the abrasives increases, the surface roughness decreases. The surface roughness influences the tensile strength perpendicular to the surface of the overlaid samples. The most suitable surfacing type for lower cost and the highest tensile strength is the sanding with the 240-grit abrasive.  相似文献   

3.
This paper presents a study of the development of surface roughness models for turning supermet 718 nickel super alloy (300 BHN), using different tool materials namely; CBN (SANDVIK CB50), Carbide (SANDVIK HIP k10), and ceramic (SANDVIK CC680) under dry cutting conditions and a constant nose radius. The models are developed in terms of cutting speed, feed rate, and depth of cut. These variables were investigated using design of experiments and utilization of the response surface methodology (RSM). A separate surface roughness model corresponding to each tool material is established, tested and reported.  相似文献   

4.
Recent researches in the field of dry machining have indicated that surface texture has the potential to influence tribological conditions. Researchers have studied the application of controlled surface microtextures on cutting tool surfaces to improve machining performance by changing the tribological conditions at the interfaces of tool–chip and tool–work piece. An experiment to study the performance of the microtextured high-speed steel cutting implement within the machining of steel and aluminum samples was performed. Surface textures were introduced using Rockwell hardness tester, Vickers hardness tester, and by scratching with diamond dresser on the face of single point cutting tool. Machining in dry conditions was applied on mild steel (EN3B) and aluminum (AA 6351) samples using lathe machine with microtextured and traditional cutting tool for the constant range of feed, depth of cut, and for varying range of cutting speeds. Measurement of cutting force, cutting temperature, and surface roughness of the work surfaces after machining were made. The results showed reduction in cutting forces and cutting temperature with textured tools in comparison with those of the untextured tool. Chips collected from different samples were studied under a microscope and the results showed that textures created on the tool surface by various methods exhibited variations in chip formation. Cutting tools without texture and with texture were comparatively studied and the outcomes of the experimental study are presented in this paper.  相似文献   

5.
Productivity in the machining of titanium alloys is adversely affected by rapid tool wear as a consequence of high cutting zone temperature. Conventional cutting fluids are ineffective in controlling the cutting temperature in the cutting zone. In this research work, an attempt has been made to investigate the effect of liquid nitrogen when it is applied to the rake surface, and the main and auxiliary flank surfaces through holes made in the cutting tool insert during the turning of the Ti–6Al–4V alloy. The cryogenic results of the cutting temperature, cutting forces, surface roughness and tool wear of the modified cutting tool insert have been compared with those of wet machining. It has been observed that in the cryogenic cooling method, the cutting temperature was reduced by 61–66% and the surface roughness was reduced to a maximum of 36% over wet machining. The cutting force was decreased by 35–42% and the flank wear was reduced by 27–39% in cryogenic cooling over that of wet machining. Cryogenic cooling enabled a substantial reduction in the geometry of tool wear through the control of the tool wear mechanisms. The application of liquid nitrogen to the heat generation zones through holes made in the cutting tool insert was considered to be more effective over conventional machining.  相似文献   

6.
Inconel 718, a nickel-based superalloy, exhibits desirable properties over a wide temperature range, and it is widely used in industry. However, Inconel 718 is typically difficult to cut because of its strong work hardening, high temperature tensile strength, and shear strength. To improve the machinability of Inconel 718, this study proposes ultrasonic turning by applying elliptical vibration to the base plane. The principle and features of the ultrasonic elliptical vibration are discussed in detail. Experiments were conducted on a commercial ultrasonic cutting unit installed onto a commercial numerical control (NC) lathe; the cutting forces were found to be lower in the new method than in conventional turning (CT). Microchip particles were observed on both chip and work surface in CT but were almost absent on the surfaces prepared by ultrasonic elliptical vibration assisted turning (UEVT). Furthermore, the cutting tool used in CT developed built-up edge (BUE), and its flank wear became heavier; in contrast, negligible BUE and less flank wear were found on the cutting tool used in UEVT. The theoretical surface roughness of UEVT was calculated and it agreed much well with the measured surface roughness.  相似文献   

7.
Tire recycling includes three steps: cutting strips, turning strips into small pieces, and shredding pieces into powder. The bases of the first stage machine’s cutting blades usually broke down provoking extensive down times. The paper is focused on the microscopic examination of the failed part. Historical data were collected, hardness measurements were carried out and chemical analysis was performed. The fracture surfaces and the cross section structure of the tool were in depth investigated by light and scanning electron microscopy. The fracture mechanism and the type of the fractures were discussed. The principal causes that led to the premature failure of the base are exposed. Considering the absence of similar failure analysis case studies in bibliography, the study may be useful for industries using similar cutting machinery.  相似文献   

8.
Abstract

In the present investigation, machinability issues of zinc–aluminium (ZA43) alloy reinforced with silicon carbide particles (SiC) were evaluated. The fabrication of composite was done through liquid metallurgy technique. Metal matrix composite (MMC) was subjected to turning using conventional lathe with three grades of cutting tools, namely, uncoated carbide tool, coated carbide tool and ceramic tool. Surface roughness and tool wear were measured during the machining process. Results reveal that roughness increases with increase in the reinforcement concentration and particle size. Feed has direct influence on roughness, i.e. surface deteriorates with higher feeds. Depth of cut has very minimum effect on the surface roughness, while inverse effect of cutting speed on the roughness was observed (i.e. increase in the cutting speed leads to better finish on the specimen). Tool wear was studied during the investigation, and it was noticed that MMC with higher reinforcement concentration and particle size cause severe wear on the flank of the cutting tool. Increase in the cutting speed, feed and depth of cut also increases the flank wear on the tool. Out of all the three grades of tools, coated carbide tool outperformed uncoated carbide and ceramic tools.  相似文献   

9.
Selection of process parameters has very significant impact on product quality, production costs and production times. The quality and cost are much related to tool life, surface roughness and cutting forces which they are functions of process parameters (cutting speed, feed rate, depth of cut and tool nose radius). In this paper, empirical models for tool life, surface roughness and cutting force are developed for turning operations. The process parameters (cutting speed, feed rate, depth of cut and tool nose radius) are used as inputs to the developed machineability models. Two data mining techniques are used; response surface methodology and neural networks. The data of 28 experiments have been used to generate, compare and evaluate the proposed models of tool life, cutting force and surface roughness for the selected tool/material combination. The resulting models are utilized to formulate an optimisation model and solved to find optimal process parameters, when the objective is minimising production cost per workpiece, taking into account the related boundaries and limitation of this multi-pass turning operations. Numerical examples are given to demonstrate the suggested optimisation models.  相似文献   

10.
The influence of surface roughness on the fatigue strength in high strength steels and different cutting processes are studied. Fatigue testing is conducted on S700 and S960 material for different plate thicknesses cut in dog bone specimens using oxygen, plasma, laser and waterjet cutting. The surface roughness is measured for all specimens and residual stress measurements are carried out. Estimations of the fatigue strength are made based on the measured surface roughness and the ISO 9013:2002 standard for thermal cutting quality tolerances. The testing shows a 15–70 % increase in the fatigue strength compared to the estimation, proving a weak connection between the surface quality levels in ISO 9013:2002 and the fatigue test results. Different codes and design recommendations (IIW, EC3 and EN 13001) for fatigue strength of cut surfaces are compared with the fatigue test results which clearly shows an increased fatigue strength with enhanced quality and steel grades. However, the codes and design recommendations do not allow for any fatigue strength improvement with improved quality and increased yield strength.  相似文献   

11.
cBN cutting tools with superior mechanical properties are widely used in machining various hard materials. The microgeometry of cBN cutting tools, such as the edge radius, has great influence on the surface quality of components and tool life. For optimized tool geometry, it is crucial to understand the influence of the cBN cutting tool microgeometry on the machined surface quality. In this study, the attempt has been made to investigate the correlation between the cutting tool edge radius and surface quality in terms of the surface roughness and subsurface deformation through a FE simulation and experiment. Machining tests under different machining conditions were also conducted and the surface roughness and subsurface deformation were measured. Surface roughness and subsurface deformation were produced by the cutting tools with different edge radii under various cutting parameters. Both results from the FE simulation and machining tests confirmed that there was a significant influence on the surface quality in terms of both the surface roughness and subsurface quality from the edge radius. There is a critical edge radius ofcBN tools in hard turning in terms of surface quality generated.  相似文献   

12.
In machining operations, cutting fluids have been comprehensively used to improve the cutting tool life, but the issues related to manufacturing cost, environment and health call for reducing their use by possible methods. Minimum quantity lubrication (MQL) is a technique that overcomes these problems by spraying a small amount of cutting fluid (<100?ml/hr) as mist using compressed air. In this work, the basic MQL technique is used to achieve flow rates slightly higher (~880?ml/hr) than MQL using simple techniques like paint sprayer and compressor, which is more generally called reduced quantity lubrication (RQL). Another method to increase the tool life is by cryogenic treatment, which increases the hardness of the tool. Tungsten carbide drill bits were subjected to cryogenic treatment (?185 °C). Drilling studies were carried out on AISI 304 stainless steel (SS) using untreated and cryo-treated WC drill bits under RQL and conventional wet lubrication conditions. The tool wear on the treated WC drill bits with RQL was comparatively less than on the untreated ones with RQL and wet lubrication. These improvements were established through microhardness, SEM images, XRD, wear studies and surface roughness measurements comparisons.  相似文献   

13.
The aim of this work is to investigate the machinability of austenitic AISI 302 stainless steel under oblique cutting. This can be achieved by studying the cutting forces, analysis of tool life, and investigation of the surface roughness at different cutting conditions and nose radius. A factorial experiment and analysis of variance technique are used in which several factors are evaluated for their effects on each level. The machinability experiments are based on design of experiments to obtain empirical equations for machinability values for machining conditions such as speed, feed, depth of cut, and nose radius. The parameters considered in the experiments were optimized to attain maximum tool life using a response graph and a response table. Based on the response models, dual response contours (tool life and surface roughness as a response and metal removal rate) have been plotted in cutting speed-feed planes. Evaluating the effect of the predominant variables influencing the value of tool life is very important for improving the machined product quality.  相似文献   

14.
复合材料的切削加工表面结构与表面粗糙度   总被引:16,自引:1,他引:15       下载免费PDF全文
普通金属材料的切削加工理论表面粗糙度可以用公式计算。复合材料经切削加工后其表面留有各种凹凸缺陷,这些谷峰轮廓并非由刀刃直接切出,故不宜用现有普通材料的公式计算其理论表面粗糙度。纤维增强复合材料的切削加工表面结构和粗糙度与切削方向密切相关。颗粒增强复合材料无方向性,其已加工表面结构和粗糙度主要受增强颗粒硬度和粒度以及含量控制。增强体与基体的界面强度及切削刀具和工艺条件对复合材料加工表面粗糙度有很大影响。   相似文献   

15.
Austenitic stainless steels are hard materials to machine, due to their high strength, high ductility and low thermal conductivity. The last characteristic results in heat concentration at the tool cutting edge. This paper aims to optimize turning parameters of AISI 304 stainless steel. Turning tests have been performed in three different feed rates (0.2, 0.3, 0.4 mm/rev) at the cutting speeds of 100, 125, 150, 175 and 200 m/min with and without cutting fluid. A design of experiments (DOE) and an analysis of variance (ANOVA) have been made to determine the effects of each parameter on the tool wear and the surface roughness. It is being inferred that cutting speed has the main influence on the flank wear and as it increases to 175 m/min, the flank wear decreases. The feed rate has the most important influence on the surface roughness and as it decreases, the surface roughness also decreases. Also, the application of cutting fluid results in longer tool life and better surface finish.  相似文献   

16.
Tungsten carbide is a material that is very difficult to cut, mainly owing to its extreme wear resistance. Its high value of yield strength, accompanied by extreme brittleness, renders its machinability extremely poor, with most tools failing. Even when cutting with tool materials of the highest quality, its mode of cutting is mainly brittle and marred by material cracking. The ductile mode of cutting is possible only at micro levels of depth of cut and feed rate. This study aims to investigate the possibility of milling the carbide material at a meso-scale using polycrystalline diamond (PCD) end mills. A series of end milling experiments were performed to study the effects of cutting speed, feed per tooth, and axial depth of cut on performance measures such as cutting forces, surface roughness, and tool wear. To characterize the wear of PCD tools, a new approach to measuring the level of damage sustained by the faces of the cutter's teeth is presented. Analyses of the experimental data show that the effects of all the cutting parameters on the three performance measures are significant. The major damage mode of the PCD end mills is found to be the intermittent micro-chipping. The progress of tool damage saw a long, stable, and steady period sandwiched between two short, abrupt, and intermittent periods. Cutting forces and surface roughness are found to rise with increments in the three cutting parameters, although the latter shows signs of reduction during the initial increase in cutting speed only. The results of this study find that an acceptable surface quality (average roughness Ra<0.2 μm) and tool life (cutting length L>600 mm) can be obtained under the conditions of the given cutting parameters. It indicates that milling with PCD tools at a meso-scale is a suitable machining method for tungsten carbides.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00298-y  相似文献   

17.
In this article, response surface methodology has been used for finding the optimal machining parameters values for cutting force, surface roughness, and tool wear while milling aluminum hybrid composites. In order to perform the experiment, various machining parameters such as feed, cutting speed, depth of cut, and weight (wt) fraction of alumina (Al2O3) were planned based on face-centered, central composite design. Stir casting method is used to fabricate the composites with various wt fractions (5%, 10%, and 15%) of Al2O3. The multiple regression analysis is used to develop mathematical models, and the models are tested using analysis of variance (ANOVA). Evaluation on the effects and interactions of the machining parameters on the cutting force, surface roughness, and tool wear was carried out using ANOVA. The developed models were used for multiple-response optimization by desirability function approach to determine the optimum machining parameters. The optimum machining parameters obtained from the experimental results showed that lower cutting force, surface roughness, and tool wear can be obtained by employing the combination of higher cutting speed, low feed, lower depth of cut, and higher wt fraction of alumina when face milling hybrid composites using polycrystalline diamond insert.  相似文献   

18.
This study investigated the cutting performance of coated CC6050 and uncoated CC650 mixed ceramics in hard turning of hardened steel. The cutting performance was mainly evaluated by cutting force components and tool wear. The planning of experiments was based on Taguchi’s L36 orthogonal array. The response surface methodology and analysis of variance were used to check the validity of multiple linear regression models and to determine the significant parameter affecting the cutting force components. Tool wear progressions and, hence, tool life, different tool wear forms and wear mechanisms observed for tools coated with TiN and uncoated mixed ceramics are presented along with the images captured by digital and electron microscope. Experimental observations indicate higher tool life with uncoated ceramic tools, which shows encouraging potential of these tools to hard turning of AISI H11 (50 HRC). Finally, tool performance indices are based on units which characterise machined cutting force components and wear when hard turning.  相似文献   

19.
In this article, a subtractive clustering-based fuzzy identification method and a Sugeno-type fuzzy inference system are used for modeling in metal cutting. This approach is considered with its application on the experimental study of Boring and Trepanning Association (BTA) deep-hole drilling. The model for the surface roughness is identified by using the cutting speed and feed as input data and roughness as the output data. Using subtractive clustering in both input and output spaces performs the model-building process. Minimum error model is obtained through enumerative search of clustering parameters. The fuzzy model obtained is capable of predicting the surface roughness for a given set of inputs (speed and feed). Therefore, the operator can predict the quality of the surface for a given set of working parameters and will then be able to set the machining parameters to achieve a certain surface quality. The fuzzy model is verified experimentally by further experimentation using different sets of inputs. The tool life is also investigated using the same approach. The fuzzy inference system obtained is capable of predicting the tool life for a given set of cutting parameters. Therefore, the operator will be able to predict how many minutes the cutting tool is going to last and will set the time for the next tool change.  相似文献   

20.
The material removal mechanism in wire electrical discharge machining of an alumina particulate reinforced aluminum based composite and the related machined surface morphologies were investigated. Under the two cutting conditions of this study, fine and coarse cuttings, the surface roughness measurements on the machined surfaces of the composite material did not show a significant difference, but their corresponding surface topographies were found to be intrinsically different. Besides, surface bandings were observed on the machined surfaces of some fine cut specimens and was believed to be caused by shifting of the wire. Based on these observations and the measured profiles, a material removal scheme for the two cutting conditions was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号