首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
根据金属氢化物的热力学特性,储氢合金可应用于热驱动化学氢压缩器。针对热驱动化学氢压缩器用储氢合金的要求,系统研究了Ti-Mn系和Ti-Cr系多元储氢合金的储氢性能,研究了Cr/Mn比,Fe部分取代Cr,Zr部分取代Ti以及A侧过化学计量对Ti-Mn系和Ti-Cr系多元储氢合金的储氢容量、吸放氢平台特性(包括压力、滞后和平台倾斜度等)、热力学性能、活化和动力学性能的影响,筛选出一对性能优良的储氢合金(Ti0.95Zr0.07)(Mn1.1Cr0.7V0.2)和(Ti0.95Zr0.07)(Cr1.4Mn0.4Fe0.1Cu0.1)分别作为两级热驱动化学氢压缩器的低压级和高压级合金。以此2合金设计制作了氢容量为50L的压缩器,以水作为热交换介质可将压力为2.5MPa氢气压缩到40MPa以上。  相似文献   

2.
采用磁悬浮熔炼方法制备(La0.8Nd0.2)2Mg(Ni0.8.xCo0.1Mn0.1Alx)9(x=0,0.05,0.1,0.15)系列合金,系统研究了Al替代Ni对合金相结构、储氢性能及电化学性能的影响。XRD分析表明,铸态合金分别由LaNi。相及LaNi。相组成;P—C-T测试显示随着Al替代量的增加,在相同温度下,合金的最大吸氢量先增加后减少;电化学测试表明,随着x增加,合金电极的最大放电容量逐渐降低,最大放电容量由x=0时的347mA·h/g逐渐下降到x=0.15时的263mA·h/g。  相似文献   

3.
为改善Ti—V基固溶体型储氢合金的电化学性能,使用少量的Zr部分取代Ti19.5V40Mn16.2Cr9.8Ni14.5合金中的Ti,并采用XRD,SEM以及PCT等测试手段研究替代前后合金微观结构和储氢性能的变化情况。通过XRD和SEM分析表明,(Ti1-xZrx)19.5V40Mn16.2Cr9.8Ni14.5(x=0,0.1,0.15,0.2,0.25,0.3)合金均是由Ti-V基BCC相和C14 Laves相组成。但Zr的部分替代明显增加了C14 Laves相的含量,并使Ti-V基BCC相在减少的同时由树枝状变成了被C14 Laves相包围的岛状。PCT曲线显示:随着Zr替代量的增加。合金的吸放氢平台不断下降,而合金的吸放氢量先有所增加后又逐渐减小。这说明适量提高C14 Laves相的含量对增加Ti—V基固溶体型储氢合金的吸放氢能力有一定的促进作用。  相似文献   

4.
V对贮氢合金微观结构和电化学性能的影响   总被引:3,自引:0,他引:3  
为了开发AB5型稀土系低Co贮氢合金,研究了加V低Co贮氢合金M/Ni3.55Co0.3Mn0.4Al0.25Cu0.15Fe0.1Cr0.1Zn0.13Vx(x=0.02,0.05,0.08)V含量变化对放电容量、循环稳定性的影响机理。结果表明,加V低钴贮氢合金可以获得良好的综合电化学性能,但V的加入应严格控制。在本研究范围内,x=0.02的加V低钴贮氢合金具有最佳的综合电化学性能。  相似文献   

5.
为了改善Ti基贮氢合金的电化学性能,采用XRD,SEM及EDS分析了Ti0.3Zr0.225V0.25Mn0.3-xNi0.45+x(x=,0.05,0.10,0.15,0.20,0.25)贮氢合金的相结构及相成分,并研究了合金的电化学性能。结果表明,合金均由六方结构的C14型Laves主相和立方结构的C15型Laves第二相构成;随着Ni替代量x的增大,合金的活化性能降低,而循环稳定性得到一定程度的改善。当Ni替代量x=0.05时,合金的放电容量达到最大,为426mAh/g,显示出很大的应用潜力.  相似文献   

6.
V-Ti-Cr-Fe合金的储氢性能研究   总被引:5,自引:0,他引:5  
研究了V(30%)-Ti(15%~55%)-Cr(7%~43%)-Fe(2%~18%)(原子分数,下同)四元合金的储氢性能。结果表明:V-Ti-Cr-Fe四元合金的吸氢量与有效吸氢量主要由Ti/(Cr+Fe)比决定,当Ti/(Cr+Fe)=1时,合金具有最好的吸放氢性能。随着Ti/(Cr+Fe)比升高,合金的晶格常数增大,氢化物的生成焓增大,放氢平台压力降低。在298K时,V30Ti35Cr25Fe10合金的吸氢量达到3.6%(质量分数,下同),有效吸氢量达到2.0%。  相似文献   

7.
研究了机械球磨La1.8Ca0.2Mg14Ni3+x%Ti(质量分数,下同)(x=0,5,10)合金的微结构和储氢性能。气态吸放氢研究表明。加入钛粉球磨能有效提高合金的活化性能、储氢容量和吸放氢速率。铸态合金经过6次活化后,在613K时放氢量为4.12%(质量分数,下同)。加Ti球磨改性10h后,随着X增加,合金经过2次~3次循环基本完全活化。吸放氢性能也相应提高。Ti含量在x=0,5,10时合金在613K的放氢量分别为4.69%,4.80%,4.83%:当x=10时合金在373K的吸氢量达到3%以上,在600K经过2min就能达到4.81%(为最大吸氢量的97%)。微结构分析表明。具有表面催化活性的Ti粉与合金基体表面进行复合,并使合金发生部分非晶转变,能有效改善La1.8Ca0.2Mg14Ni3合金的储氢性能。  相似文献   

8.
TiMn1.25-5yCr0.25(V4Fe)y合金的储氢性能   总被引:1,自引:1,他引:0  
通过V4Fe对Mn的替代,系统研究了储氢合金TiMn1.25—5yCr0.25(V4Fe)y,(y=0.002,0.04,0.06,0.08)的储氢性能。XRD结果显示:合金为C14型Laves相结构,合金的晶胞参数随着V4Fe量的增加而增大。PCT结果表明:适量的V4Fe替代Mn可增加合金的储氢量,降低平衡压和减少滞后。退火处理可使合金的相结构均匀化,进一步改善合金的储氢性能。TiMn0.95Cr0.25(V4Fe)0.06合金在1223K下退火处理6h后,最大和有效储氢量分别为2.0%和1.75%(质量分数),且滞后效应小,适合于作为质子交换膜燃料电池的供氢源。  相似文献   

9.
钛专利1则   总被引:5,自引:0,他引:5  
研究了Ti0.8Zr0.2Mn2-xCrx(x=0.2,0.4,0.6,0.8和1.0)系、Ti0.9Zr0.2Mn1.8V0.2和Ti0.9ZrxMn1.8-yCryV0.2(x=0.1,0.15和0.2);y=0.2和0.4)系AB2型Ti-Mn基合金的储氢性能和晶体结构。结果表明:Zr元素对A侧Ti的部分置换和A侧过化学计量可显著提高合金的活性性能及吸放氢量。这些合金的主相均为C14型Laves相,其储氢量随点阵参数a,c和晶胞体积V的增加而提高,当a≥0.4894nm,c≥0.8040nm或V≥0.1668nm∧3时,储氢量可达到235ml/g以上。  相似文献   

10.
系统研究了TiV1.35Cr1.35-x.Mnx(x=0,0.15,0.25,0.35,0.45)合金的相结构及储氢性能。XRD分析表明,所有合金均为体心立方(b.c.c.)结构的单一固溶体相,其晶胞常数随Mn含量的增加而逐渐减小。储氢性能测试表明,用Mn部分取代Cr后,合金的活化性能变差,25℃最大吸氢量有所下降,但合金的吸放氢压力滞后减小,放氢压力平台变得平坦,100℃有效放氢量和放氢率也随着Mn含量的增加先升后降,并在x=0.35时达到最大值。  相似文献   

11.
研究了Ti0.9Zr0.2Mn(1.8-x)MxV0.2(M=Ni,Cr;x=0,0.2)合金的晶体结构与贮氢性能。结果表明,Ti0.9Zr0.2Mn1.6Ni0.2V0.2和Ti0.9Zr0.2Mn1.6Cr0.2V0.2的贮氢量达到240mL/g。合金的主相均为C14 Laves相,镍,铬的取代使点阵常数和晶胞体积增大,P-C-T曲线的滞后降低,压力平台的倾斜度增加。  相似文献   

12.
采用三步感应熔炼法制备了La(1-x)MgxNi4.25Al0.75 (x=0.0,0.1,0.2,0.3) 储氢合金,对该系列合金的晶体结构和储氢性能方面进行了研究。晶体结构和相分析结果表明,当x=0.0和0.1时,合金由单一的LaNi4Al相组成;而x=0.2和0.3时,合金由LaNi4Al相, (La,Mg)Ni3相和AlNi3相构成。随着Mg含量x从0.2增至0.3时,合金的第二相丰度和吸/放氢平衡压明显升高,同时储氢容量减小。研究发现,当Mg添加量x=0.1时,合金除具有良好的储氢容量和低平台压外,其吸氢动力学性能更好。  相似文献   

13.
根据正交试验方案,采用共沉淀还原扩散法制备LaMg2Ni9-x-y-zCoxMnyCuz(x=1.8,2.1,2.4,2.7,3.0;y=2.1,2.4,2.7,3.0,3.3;z=0.3,0.6,0.9,1.2,1.5)系列AB3型稀土基储氢合金,研究该系列合金的放电容量和循环稳定性,并用X射线衍射对产物的结构进行微观分析。结果表明:3元素同时替代时合金的放电容量均高于单元素替代时合金的放电容量,但循环稳定性有所下降。合金结构分析表明,合金主相为La4Co3相。该系列合金中LaMg2Ni2.7Co2.1Mn2.7Cu1.5合金电极表现出的综合电化学性能较优。  相似文献   

14.
La0.7Mg0.3Ni3.4-xCo0.6Mnx(x=0.0~0.5)合金主要由(La,Mg)Ni3相和LaNi5相构成,各相的晶胞参数和晶胞体积均随Mn含量的增加而增大。随Mn含量的增加,合金的放氢平衡压力从0.128MPa(x=0.0)下降到0.067MPa(x=0.5),导致最大吸氢量从x=0.0时的1.19%(质量分数,下同)逐渐增加到x=0.4时的1.38%。合金的最大放电容量随Mn含量的增加首先从330.4mAh/g(x=0.0)增加到360.6mAh/g(x=0.4),然后减小到346.9mAh/g(x=0.5)。随Mn替代量的增加,合金电极的高倍率放电能力先改善后降低,合金电极的表面反应阻抗先降低后升高,而氢的扩散系数先增加后减小,说明合金的电化学动力学性能首先提高然后降低。  相似文献   

15.
研究了元素Ti对贮氢电极合金ZrMn0.7V0.2Co0.1Ni1.2的相结构、相组成以及电化学性能的影响。结果表明,对于合金Zr1-xTix(Mn0.7V0.2Co0.1Ni1.2),其母体合金的主相为C15型Laves相,并含有少量的非Laves相Zr7M10;但随着掺Ti量的增加,合金中出现C14型Laves相,而且其含量逐渐增加;在x=0.1~0.2时,合金中还出现少量的TiNi相,而在x=0.4~0.5时,非Laves相Zr7M10和TiNi相全部消失,说明元素Ti大量的掺杂抑制了第二相的产生:而且随着Ti含量的增加,合金中的C15型和C14型Laves相的晶格常数逐渐减小。电化学测试结果发现,当含Ti量x=0.2时,合金有最大放电容量Cmax为354mAh/g,在放电电流为300mAh/g条件下,高倍率放电性能比母体合金提高了15%。  相似文献   

16.
Ti1.2Fe+x%Mg(x=1,3,5)合金的贮氢特性   总被引:3,自引:2,他引:3  
在TiFe合金中添加少量的IIA族轻金属元素Mg,并且使Ti侧过化学计量,组织Ti1.2F3 x%(质量分数,下同)Mg(x=1,3,5)试验合金,研究了该系列合金的储氢特性。结果表明,Ti1.2F3 3%Mg和Ti1.2F3 5%Mg合金在室温下,经2次吸放氢操作即能完全活化,前者的储氢量为213ml/g,且具有较小的压力滞后和平台斜率,适合作为内氢燃料电池氢源储氢材料。X射线分析发现,所有试验合金的主相均为TiFe相,而合金显微组织显示,Mg以弥散颗粒分布于合金基体,并讨论了Mg的添加和Ti过量对合金活化性能和储氢容量的影响机制。  相似文献   

17.
研究了Mn替代Ni对La2Mg0.9Al0.1Ni7.5-xCo1.5Mnx(x=0,0.3,0.6,0.9)贮氢合金相结构和电化学性能的影响。XRDRietveld全谱拟合分析表明:Mn替代改变了合金的物相组成和物相的丰度。LaNi3相消失,αLa2Ni7相丰度的变化表现为先增加(x=0,0.3)后减少(x=0.6,0.9),LaMgNi4相和La5Ni19相的丰度则随合金中Mn含量x的增加而增加。Mn替代Ni降低了合金的贮氢容量、最大电化学放电容量和活化性能,La2Mg0.9Al0.1Ni7.2Co1.5Mn0.3合金电极表现出最好的电化学循环稳定性,合金的高倍率放电性能随Mn含量的增加降低,这归因于交换电流密度(I0)和氢扩散系数(D)的降低。  相似文献   

18.
用悬浮熔炼法制备了不同含硅量的低钴LaNi5型储氢合金 ,用XRD法测定其结构 ,并测试了电化学容量和寿命 ,分析了Si含量对性能的影响 ,合成了新型储氢合金La0 .8Nd0 .2 Ni3 .6Co0 .4Mn0 .4A10 .3 Cu0 .1Fe0 .1Si0 .1,其比容量为 30 3mAh/g ,30 0次循环后的容量还有其最高容量的 84 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号