首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以聚丁二酸丁二酯(PBS)薄片为降解底物,利用角质酶对其进行降解研究,考察PBS的酶促降解行为。利用扫描电子显微镜、差示扫描量热仪和热重分析仪等方法对降解前后的PBS薄片进行了表征分析,并进一步采用质谱仪对降解产物进行分析。结果表明,在酶浓度2.5 U/mL、反应温度37 ℃以及pH 7.4的条件下,经16 h降解PBS薄片的降解率可达93.88 %,在降解时间为2 h时有最大降解速率32.97 μg/cm2·h;PBS薄片有片层脱落降解的现象,促进了角质酶的降解作用;随降解时间的延长,PBS相对结晶度逐渐降低,热稳性也呈现下降趋势;PBS被降解成单体或寡聚物。  相似文献   

2.
史可  苏婷婷  王战勇 《中国塑料》2018,32(2):116-121
以聚丁二酸丁二酯(PBS)薄膜为降解底物,利用南极拟酵母脂肪酶(Lipozyme CALB)对其进行降解研究;考察了pH值、温度、酶浓度以及降解时间对Lipozyme CALB降解PBS薄膜的影响,并通过扫描电子显微镜、差示扫描量热仪、热重分析仪及质谱分析仪等对PBS薄膜以及PBS的降解产物进行了表征分析。结果表明,在酶浓度为20 U/mL,反应温度为50 ℃,pH值为 7.0的条件下,经24 h的降解,PBS薄膜(3 cm×1 cm×0.5 cm)的降解率可达90 %以上;随着降解时间的延长,薄膜表面明显发生了降解并形成孔洞,且PBS的相对结晶度呈现上升趋势,PBS薄膜的热稳性逐渐上升; PBS的降解产物为1,4丁二酸和丁二酸丁二醇二聚体。  相似文献   

3.
以1,4-丁二醇及不同比例的己二酸、丁二酸为原料,制备一系列聚丁二酸-己二酸丁二醇酯[P(BS-co-BA)]共聚酯,借助衰减全反射傅里叶变换红外光谱仪(ATR-FTIR)、核磁共振仪(1H-NMR)、差示扫描量热仪(DSC)、X射线衍射仪(XRD)以及热重分析仪(TG)等对共聚酯的结构性能进行表征分析。角质酶降解结果表明,在经过16 h后,4种共聚酯降解率均达到80%以上,2种均聚酯均仅为40%左右。其中聚酯酶降解速率为P(BS-co-40%BA)>P(BS-co-60%BA)>P(BS-co-80%BA)>P(BS-co-20%BA)>聚己二酸丁二醇酯(PBA)>聚丁二酸丁二醇酯(PBS)。综合可知P(BS-co-40%BA)热稳定性相比于PBA更好,降解性能较PBS更好,为最佳共聚酯。  相似文献   

4.
将望江南提取物与聚丁二酸丁二醇酯(PBS)进行物理共混改性,制备了PBS/望江南提取物复合材料。研究了添加不同含量望江南提取物时复合材料的综合性能,考察了角质酶对复合材料的生物降解性能的影响以及复合材料对金黄色葡萄球菌和大肠杆菌的抗菌性能。研究发现,当5 %和7 %(质量分数,下同)望江南提取物添加入PBS后,复合材料的弹性模量显著提高,添加5 %望江南提取物的PBS的水接触角达到最高;望江南提取物的加入对PBS的热稳定性无明显影响,而结晶性能较加入前有所提高; PBS/5 %望江南提取物复合材料经角质酶降解8 h后降解率可达92.2 %;该复合材料对金黄色葡萄球菌有明显的抗菌效果,但对大肠杆菌无明显抗菌效果。  相似文献   

5.
利用脂肪酶对聚ε己内酯(PCL)薄膜进行降解研究,并利用扫描电子显微镜、差示扫描量热仪和热重分析仪、X射线衍射、核磁共振以及质谱等分析方法对降解后的PCL薄膜进行了表征分析。结果表明,PCL薄膜(3 cm×1 cm×0.05 cm)在45 ℃和30 U/mL脂肪酶的作用下,经20 h后失重率可达86.9 %;随着降解时间的增加,PCL薄膜表面发生降解并形成孔洞,且孔洞随降解时间呈现增大趋势;PCL相对结晶度随降解时间的延长而逐渐降低;随降解时间的延长,PCL薄膜的热稳性呈下降趋势;PCL在酶促降解前后化学组成未发生变化。  相似文献   

6.
赵昕  赵子玉  江奥  孙芳芳  张静宜  苏婷婷  王战勇 《塑料》2020,49(2):40-43,47
将可降解高分子材料聚丁二酸丁二醇酯(PBS)和黄连素(Berberine)共混,制备了PBS/黄连素复合抗菌材料,并对其力学性能、结晶性能、亲水性能、热性能、抗菌性能及生物降解性能进行了分析。结果表明,当黄连素的添加比例为5%时,与纯PBS相比,复合材料的拉伸强度基本不变,结晶能力增大,疏水性增强,热稳定性增加。抗菌性能测试结果表明,随着黄连素含量不断增加,复合材料的抗菌能力逐渐提升。含有5%黄连素的复合材料对大肠杆菌和金黄色葡萄球菌的抑制作用均能达到91%以上。使用角质酶降解12 h后,含有5%黄连素的复合材料具有较高的降解率,接近95%,与纯PBS的降解率相差较小。因此,黄连素在提高材料抗菌性能的同时,不影响其降解性能。  相似文献   

7.
从活性污泥中筛选得到1株具有聚丁二酸丁二醇酯(PBS)降解能力的菌株LSU 1601,经菌体形态特征、菌落培养特征、生理生化鉴定和16S rDNA基因序列分析,初步鉴定为德氏食酸菌(Acidovorax de1afiedii)。结果表明,菌株LSU1601在培养温度为30℃、培养基起始pH值为6.8、培养时间为48 h以及振荡转速为120 r/min的条件下,具有较高的产PBS降解酶的能力;同时菌株在培养温度为30℃,培养基起始pH值为6.8的条件下,经84 h的培养,对PBS薄膜的降解率可达到48.2%;经微生物降解作用,PBS薄膜表面出现明显侵蚀痕迹,且随着降解时间的增加,侵蚀作用更加明显;PBS经微生物降解产生了1,4丁二醇单体、1,4-丁二酸单体以及丁二酸-丁二醇二聚体,未发现其他的寡聚体。  相似文献   

8.
张敏  覃家祥  李成涛  张祎  邱建辉 《塑料》2014,(4):91-94,113
采用己二醇对聚丁二酸丁二醇酯(PBS)改性,合成了不同比例、分子质量均在6×105左右的聚丁二酸丁二醇/己二醇酯(PBSH),并以其为底物分别在2种不同的有机溶剂氯仿(CHCl3)和四氢呋喃(THF)中,研究了洋葱假单胞菌(PC)脂肪酶对其催化降解规律和溶剂效应。以GPC测试了共聚物降解前后的分子质量变化;以TG分析了酶降解共聚物前后热性能的变化;以MALDI-TOF-MS对降解产物进行了分析。研究结果表明:PBSH在2种溶剂中都能快速降解;降解60 h后2种共聚物的相对分子质量均减小,分子质量分布均变宽;但在氯仿中酶催化活性更高,PBSH降解速率更快;降解前后热失重5%时热分解温度均降低;MALDI-TOF-MS结果表明:在2种溶剂中降解产物中含SH(丁二酸己二醇酯)片段较多,且氯仿中降解产物种类更多,并易于成环。  相似文献   

9.
采用硅烷偶联剂(KH-550)对纳米氧化锌进行了表面改性,通过熔融共混法制备了聚丁二酸丁二醇酯(PBS)/纳米氧化锌复合材料,利用扫描电子显微镜、热重分析仪、差示扫描量热仪等对复合材料的力学性能、热性能和非等温结晶性能进行了研究分析,并通过Ozawa-Flynn-Wall方法分析了复合材料的热降解行为。结果表明,纳米氧化锌能提高PBS的拉伸强度和弯曲强度,但降低了其冲击强度;改性后的纳米氧化锌可以提高其与PBS的界面相容性,并提高其在PBS基体中的分散性能,不同程度地提高了复合材料的力学性能;纳米氧化锌提高了PBS的结晶速率,降低了其热解反应活化能。  相似文献   

10.
采用熔融共混法制备了PBS/PPC/MPEG(WMPEG=0%,5%,10%,15%,20%)共混物,利用单边缺口弯曲试验(SENB)研究了MPEG用量对其断裂的临界能量释放率Gin的影响;以热重分析法(TG)研究了PBS/PPC及PBS/PPC/MPEG在氮气气氛中的热降解过程,并采用Kissinger法研究了共混物的热降解动力学和表观活化能(E)。结果表明:当MPEG含量为5%时,共混物临界能量释放率Gin达到最大值1.47 kJ/m2;共混物出现两个热失重峰,热降解活化能为125.5 kJ/mol,增容剂MPEG的引入,使共混物的活化能提高了到160.1 kJ/mol。  相似文献   

11.
利用熔融共混法制备了综合性能优良的聚丁二酸丁二醇酯/乙烯-乙烯醇共聚物( PBS/EVOH)共混物,并通过扫描电子显微镜、傅立叶转变红外光谱( FTIR)仪、万能试验机以及差示扫描量热分析仪分别研究了共混体系的微观形态、两相间的作用情况、力学性能以及热性能.结果表明,共混体系为两相“海-岛”结构,分散相以“球状”均匀地分布于连续相中,且两相界面结合比较好;FTIR结果证实了PBS与EVOH之间存在强烈的氢键作用,且氢键作用降低了PBS结晶度,从而可以加快PBS的降解过程.PBS/EVOH共混物可用于制造可降解的包装薄膜材料.  相似文献   

12.
《塑料》2015,(3)
采用两种酸一种醇和两种醇一种酸分别对PBS改性,合成了不同化学结构的共聚酯PBSA和PBSH,并在磷酸缓冲液中以它们为底物,研究了对脂肪酶N435降解反应的异同。采用质量损失率和GPC评价了降解前后共聚物分子质量的变化;WAXD和TG分析了酶降解前后共聚物结晶度和热性质的变化;POM对降解后的材料进行了形貌观测。研究结果表明:相比PBS,PBSA和PBSH对脂肪酶的感受性有很大提高,24 h后降解率分别达到90%和60%以上,并且PBSA降解速率比PBSH快很多;降解后2种共聚物相对分子质量变化不大,但分子量分布系数变宽;结晶度增大;降解3 d后PBSA的热稳定性降低,而PBSH的热稳定性提高。  相似文献   

13.
采用连续式蒸汽爆破法对棉皮纤维进行预处理,将其与聚丁二酸丁二醇酯(PBS)进行共混,制备了PBS/棉皮纤维复合材料。利用扫描电镜对棉皮纤维及PBS/棉皮纤维复合材料的微观形貌进行了分析,并研究了棉皮纤维含量对PBS/棉皮纤维复合材料熔融及结晶行为、热降解性能、热变形温度以及力学性能的影响。结果表明:经蒸汽爆破处理后,棉皮纤维直径变小,比表面积变大,在PBS基体中分散均匀;棉皮纤维的存在改变了PBS的熔融峰值温度,提高了其结晶度;与纯PBS相比,PBS/棉皮纤维复合材料在高温条件下的热稳定性得到改善维,卡软化温度和弯曲强度提高。  相似文献   

14.
分别采用2种酸1种醇和2种醇1种酸分别对聚丁酸丁二醇酯(PBS)改性,合成了不同化学结构的共聚酯聚(丁二酸丁二醇酯-co-己二酸丁二醇酯)(PBSA)和聚(丁二酸丁二醇-co-丁二酸己二醇酯)(PBSH),并在磷酸缓冲液以它们为底物在磷酸缓冲液中,研究了对脂肪酶N435降解反应感受性的异同。采用质量损失率和凝胶渗透色谱评价了降解前后共聚酯相对分子质量的变化;广角X衍射仪和热重分析仪分析了酶降解前后共聚酯结晶度和热性质的变化;偏光显微镜对降解后的材料进行了形貌观测。结果表明,相比于PBS,PBSA和PBSH对脂肪酶的感受性有很大提高,24 h后降解率分别达到90 %和60 %以上,并且PBSA降解速率比PBSH快;降解后两种共聚酯相对分子质量变化不大,但相对分子量分布系数变宽,结晶度增大;降解3 d后PBSA的热稳定性降低,而PBSH的热稳定性提高。  相似文献   

15.
马莹  侯微  苏婷婷 《塑料科技》2023,(1):95-100
通过酯化和缩聚反应制备聚丁二酸丁二醇酯(PBS)、聚己二酸丁二醇酯(PBA)和聚(丁二酸-co-己二酸丁二醇)共聚酯(P(BS-co-BA)),对PBS、PBA和P(BS-co-BA)进行酶促降解研究。结果表明:与PBS和PBA相比,共聚酯具有良好的生物降解性能。6种聚酯酶水解速率依次为P(BS-co-40%BA)>P(BS-co-60%BA)>P(BS-co-80%BA)>P(BS-co-20%BA)>PBA>PBS。P(BS-co-40%BA)在10 h内基本完全降解,比PBS快26 h。与PBA相比,共聚酯的热稳定性得到提高,P(BS-co-40%BA)热分解50%的温度比PBA高22.3℃。随着降解时间的增加,共聚酯的化学结构、晶体结构和热稳定性基本不变,有利于其在新能源汽车设计中的应用。  相似文献   

16.
采用L_9(3~3)正交试验对α–淀粉酶降解聚丁二酸丁二酯(PBS)基共聚酯/热塑性淀粉(TPS)复合材料的条件进行了优化,得出α–淀粉酶的最优降解条件为:温度65℃,磷酸盐缓冲液p H=6.8,α–淀粉酶浓度3.5 g/L。利用α–淀粉酶和南极假丝酵母脂肪酶N435对PBS/TPS、聚(丁二酸丁二醇-co-丁二酸二甘醇)酯(PBS-co-DEG)/TPS、聚(丁二酸丁二醇-co-丁二酸乙二醇-co-丁二酸聚乙二醇200)酯(PBES-co-PEG200)/TPS、聚(丁二酸丁二醇-co-丁二酸乙二醇-co-丁二酸聚乙二醇400)酯(PBES-co-PEG400)/TPS复合材料分别进行降解实验,研究了两种酶对这4种复合材料降解性能的影响。结果表明,α–淀粉酶和N435脂肪酶对复合材料均有较好的降解能力,当降解时间较短(6 h)时,α–淀粉酶对复合材料的降解效果优于脂肪酶N435,但当降解时间超过60 h后,后者的降解效果略优于前者;(PBES-co-PEG200)/TPS和(PBES-co-PEG400)/TPS复合材料的降解性能总体上优于(PBS-coDEG)/TPS及PBS/TPS复合材料;随PEG200和PEG400在共聚酯中的含量增加,即醚链含量的增加,相应复合材料的质量损失率呈升高趋势,但当醚链含量较高时,复合材料的质量损失率反而有所下降。  相似文献   

17.
将聚(3羟基丁酸共聚4羟基丁酸酯)[P(3,4HB)]与聚(3羟基丁酸共聚3羟基戊酸酯)(PHBV)通过溶剂共混的方式进行共混改性,研究了改性后材料力学性能的变化情况,并进一步利用差示扫描量热法和热重法进行了表征,最后利用Pseudomonas mendocina DS04-T菌株对共混材料的降解性能进行了考查,并利用扫描电子显微镜观察了薄片降解后的微观形貌。结果表明,当P(3,4HB)与PHBV的混合比例为80/20时复合材料有较好的力学性能,断裂伸长率和拉伸强度均达到最大值;当PHBV组分的含量小于60 %时,共混物均形成了稳定的晶体结构,且两组分具有较强的相互作用和较好的相容性;Pseudomonas mendocina DS04-T对共混材料的完全降解时间大大低于单独降解P(3,4HB)所需的时间。  相似文献   

18.
采用熔融共混法制备了聚丁二酸丁二酯(PBS)/木质纤维/滑石粉复合材料,其中PBS的质量分数固定为70%,其它为木质纤维和滑石粉。流变性能测试结果显示,木质纤维含量越高,复合材料的加工扭矩越大,并在木质纤维质量分数为25%时达到最高值。扫描电子显微镜分析结果表明,木质纤维和滑石粉均匀分散在PBS基体中。X射线衍射测试结果可知,木质纤维的加入降低了基体树脂的结晶度,复合材料中滑石粉的层间距变小。差示扫描量热分析结果显示,滑石粉有利于复合材料的冷结晶,PBS/木质纤维/滑石粉复合材料的熔融峰和结晶峰比PBS/木质纤维复合材料和PBS/滑石粉复合材料的尖锐。力学性能测试结果显示,加入木质纤维可以提高复合材料的力学性能,当木质纤维质量分数为25%时,复合材料的力学性能达到最佳,此时复合材料的拉伸强度为11.1 MPa,断裂伸长率和缺口冲击强度达到最大值,分别为93.3%,3.56 kJ/m2。土壤降解数据表明,木质纤维的加入显著提高了复合材料的降解速率,说明合适用量的木质纤维和滑石粉具有协同效应,能使PBS/木质纤维/滑石粉复合材料拥有更好的降解性能。  相似文献   

19.
采用苯乙烯接枝改性纳米二氧化钛(TiO2-g-PS)颗粒作为催化剂,制备了一种新型可光催化降解的TiO2-g-PS /LDPE纳米复合薄膜,并在空气中紫外光照下进行了薄膜的固相光催化降解。利用热失重、傅立叶红外光谱和扫描电子显微镜等对光照前后纯LDPE、TiO2/LDPE和TiO2-g-PS /LDPE复合薄膜进行分析表征。结果表明,改性颗粒的催化活性较高,能有效地降解聚乙烯薄膜,复合薄膜经紫外光照336 h后,光降解失重率达到36.2 %。  相似文献   

20.
采用蛋白酶K对聚乳酸(PLA)薄膜进行酶促降解,考察了溶液起始pH值、降解温度、蛋白酶K浓度、降解时间等因素对薄膜降解率的影响,并研究了后3种因素对溶液pH值变化趋势的影响。利用扫描电子显微镜(SEM)和X射线衍射(XRD)仪观察和分析了薄膜降解前后的形态和结晶情况。结果表明,随溶液起始pH值、降解温度、蛋白酶K浓度的增加,PLA薄膜降解率先增大后降低,随着降解时间的增加,PLA薄膜的降解率先逐渐增大,在6 h后趋于稳定;获得了最合适的降解工艺参数:溶液起始pH值为9.0、降解温度为160℃、蛋白酶K浓度为0.5 mg/mL、降解时间为6 h,在此条件下蛋白酶K对PLA薄膜的降解率可达(94.3±0.8)%。溶液pH值随后3种因素的变化趋势与降解率大体相反,间接反映了PLA薄膜在降解过程中生产了大量单体乳酸。SEM观察到降解后的薄膜表面形成了孔洞及蚀痕。XRD分析结果表明降解后薄膜的相对结晶度降低,晶体区域发生降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号