首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义   总被引:1,自引:0,他引:1  
使用银盐离子色层柱,从塔里木盆地顺南1井奥陶系原油中分离出含硫非烃。采用色谱色质方法,在含硫非烃中检测出了完整的低聚硫代金刚烷系列化合物,包括硫代单金刚烷、硫代双金刚烷和硫代三金刚烷系列共38个化合物,同时还检测到高聚硫代四金刚烷和高聚四金刚烷硫醇系列。以D16-单金刚烷作为定量内标,顺南1井原油中低聚硫代金刚烷、硫代单金刚烷、硫代双金刚烷、硫代三金刚烷系列含量分别为79.88 μg/g (oil)、21.27 μg/g (oil)、31.49 μg/g (oil)和27.12 μg/g (oil),高含量的硫代三金刚烷、高聚硫代金刚烷及高聚金刚烷硫醇的检出表明原油经历了中等的硫酸盐热化学还原作用(TSR)。顺南1井原油中可以检测到高聚四金刚烷和五金刚烷系列,原油中3-甲基+4-甲基双金刚烷含量高,为707 μg/g (oil),指示原油经历了强烈的裂解作用,原油裂解作用叠加TSR反应是造成该原油具有最重的海相全油碳同位素的原因,该原油全油碳同位素为-26.7 ‰。区域的高温高压背景加之走滑断裂的发育为热裂解及TSR作用提供了地质条件。  相似文献   

2.
运用全二维气相色谱—飞行时间质谱方法(GC×GC-TOFMS)从塔里木盆地顺托果勒地区顺南1井奥陶系原油中定量检测到81个1~3笼的乙基桥键金刚烷化合物,包括47个乙基桥键单金刚烷化合物,总含量为27 594.0μg/g; 32个乙基桥键双金刚烷化合物,总含量为4 415.1μg/g; 2个乙基桥键三金刚烷系列化合物,总含量为16.8μg/g;建立了金刚烷—乙基桥键金刚烷的二维色谱保留指数图版。结果显示,金刚烷类和乙基桥键金刚烷类化合物保留时间位置具有如下关系:单金刚烷系列<乙基桥键单金刚烷系列<双金刚烷系列<乙基桥键双金刚烷系列<三金刚烷系列<乙基桥键三金刚烷系列<四金刚烷系列。作为石油中热稳定性最高的饱和烃类,乙基桥键金刚烷化合物的定量分析结果,有望为原油裂解和硫酸盐热化学还原反应(TSR)等油藏次生改造作用提供新的指标。  相似文献   

3.
基于气相色谱/质谱联用仪(GC/MS)建立了柴油中金刚烷类烃指纹化合物的定性、定量分析方法,对催化裂化柴油、加氢裂化柴油、直馏柴油中金刚烷类烃指纹化合物的含量进行了分析。分析结果显示,金刚烷类烃指纹化合物在3种柴油中的含量和分布特点都有所不同,同一类型柴油中部分金刚烷类烃指纹化合物的分布具有相似性。根据金刚烷类烃指纹化合物在不同类型柴油中的分布特点总结出指纹参数,并结合主成分分析对3类柴油进行了类型识别,在主成分分析得到的样品分布图中,相同工艺来源的样品相互聚集,不同工艺来源的柴油间相互离散,可实现对3种不同类型柴油的识别和区分。  相似文献   

4.
金刚烷的浓度和指数是研究深层油藏裂解程度和成熟度的重要参数,由于金刚烷的形成机理不明,制约了金刚烷化合物在深层油气地球化学中的应用。通过对华北地区镜质体反射率(Ro)在0.55%~5.32%的二叠系煤样开展金刚烷色谱-质谱定量分析,发现低成熟煤样中存在单金刚烷系列化合物,而煤样中双金刚烷、三金刚烷和四金刚烷系列化合物的检出所对应的Ro分别为0.81%、1.82%和2.59%。这表明不同笼数金刚烷的生成具有阶段性,笼数越高,其所对应的烃源岩成熟度越高。定量分析结果表明,煤样在Ro为0.55%~3.01%时为金刚烷生成阶段,煤样在Ro>3.01%时对应金刚烷裂解阶段,其中,当Ro>2.71%,单金刚烷系列和双金刚烷系列的组成发生变化。金刚烷参数,如二甲基单金刚烷指数1(DMAI1)、二甲基单金刚烷指数2(DMAI2)、三甲基单金刚烷指数1(TMAI1)、三甲基单金刚烷指数2(TMAI2)以及乙基单金刚烷(EA)参数[1-EA/(1-EA+2-EA)],与Ro在0.55%~3.01%阶段具有较好的正相关。金刚烷产率的比值,如二甲基单金刚烷系列与二甲基双金刚烷系列比值、甲基单金刚烷系列与甲基双金刚烷系列比值、单金刚烷系列与双金刚烷系列比值以及单金刚烷与双金刚烷比值,与Ro在0.81%~4.28%阶段具有明显的负相关关系,表明这些参数可以用作评价成熟度的良好指标。  相似文献   

5.
采用内标物色谱质谱方法,对罗斯2井原油中金刚烷系列、二苯并噻吩系列和硫代金刚烷系列进行了定量分析。罗斯2井原油中金刚烷系列化合物含量、4-甲基双金刚烷+3-甲基双金刚烷含量分别为10 818,331 μg/g,表明原油经历了较强的裂解作用,裂解比例达到90%左右。金刚烷指标表明原油成熟度在1.6%以上。罗斯2井原油可以检测到完整的硫代单金刚烷、硫代双金刚烷和硫代三金刚烷系列,硫代金刚烷、硫代单金刚烷、硫代双金刚烷和硫代三金刚烷含量分别为192,160,26和6 μg/g。高含量的硫代金刚烷表明罗斯2井原油的TSR强度大于绝大多数塔中地区下奥陶统鹰山组原油。TSR作用导致罗斯2井原油具有较高含量的二苯并噻吩,含量为8 201 μg/g,使得原油二苯并噻吩/菲比值(DBT/P)增加,导致C0-/C1-DBTs和C1-/C2-DBTs比值增加。  相似文献   

6.
以中东常压渣油为原料,考察其悬浮床加氢裂化产物中酸性含氧化合物的分布情况。在反应温度450℃、反应时间1h、氢初压6MPa的条件下,采用不同催化剂对中东常压渣油进行悬浮床加氢裂化反应,反应产物进行常减压蒸馏,分为IBP~180℃(汽油馏分)、180~360℃(柴油馏分)、360~500℃(蜡油馏分)和>500℃(尾油),然后测定各馏分和尾油中酸性含氧化合物的含量;采用柱色谱法对蜡油馏分进行三组分分离和对尾油进行四组分分离,并测定各组分中酸性含氧化合物的含量。结果表明,中东常压渣油悬浮床加氢裂化产物中酸性含氧化合物主要分布在蜡油馏分中,其次是分布在尾油中;蜡油馏分中的酸性含氧化合物主要集中在芳香分中,尾油中的酸性含氧化合物主要分布在胶质中。  相似文献   

7.
为了利用蜡油缓和加氢裂化工艺灵活调节炼油厂的柴汽比,考察了反应氢分压、空速及氢油比对缓和加氢裂化蜡油及柴油产品性质的影响。结果表明:在相同转化率下,提高氢分压,蜡油及柴油产品性质均改善显著,且含量较高的单环芳烃较易发生反应,碳数较低的单环芳烃随氢分压进一步提高较易发生反应,环烷烃及链烷烃碳数分布随氢分压的变化较小;在相同转化率下,提高空速,蜡油及柴油产品性质变化较小,高空速条件下,蜡油产品各烃类碳数分布的峰值显著高于低空速的蜡油产品;在相同转化率下,提高氢油比,蜡油和柴油产品性质变化较小,高氢油比条件下,蜡油产品各烃类碳数分布峰值高于低氢油比条件下的蜡油产品。因此,在相同转化率条件下,高的氢分压有利于生产优质柴油调合组分及蜡油产品,高氢油比和高空速有利于生产碳数较高的蜡油产品,可作为优质的催化裂化或催化裂解原料。  相似文献   

8.
中深1井、中深1C井在塔里木盆地寒武系盐下获得油气突破,中寒武统阿瓦塔格组(∈2a)和下寒武统肖尔布拉克组(∈1x)原油在地球化学特征上存在较大差异。对中深1井 ∈2a原油和中深1C井∈1x原油进行银盐离子柱色层分离,获得含硫非烃,使用气相色谱—质谱方法在中深1C井原油含硫非烃检测出完整的低聚硫代金刚烷系列,包括硫代单金刚烷、硫代双金刚烷和硫代三金刚烷系列,分析了26个化合物的质谱特征,并与文献质谱特征进行对比。除了含有[M-SH]和[M-CH 3+]特征离子外,硫代金刚烷具有较强的分子离子,分子离子为硫代双金刚烷和硫代三金刚烷的基峰。使用D16-单金刚烷作为定量内标,中深1井、中深1C井寒武系原油中低聚硫代金刚烷含量分别为7.36μg/g、8 758.02μg/g,表明中深1C井肖尔布拉克组原油为强烈硫酸盐热化学还原作用(TSR)的残余油,而中深1井阿瓦塔格组原油基本未受TSR作用。中深1C井原油极高的金刚烷和二苯并噻吩系列化合物含量分别为83 872.20μg/g和57 212.5μg/g,而中深1井原油中金刚烷和二苯并噻吩系列化合物含量仅为2 180.27μg/g和421.3μg/g,进一步支持中深1C井寒武系原油经历了强烈的TSR作用。中深1C井肖尔布拉克组油气藏温度大于160℃,地层水中丰富的SO2-4、Mg2+为油气藏中的原油发生强烈TSR提供了条件。  相似文献   

9.
通过湿浸渍法制备负载型Zn-Ag/Hβ催化剂,采用XRD、SEM、XPS、Py-IR、NH3-TPD和N2吸附-脱附等手段进行表征。在稠环芳烃的加氢裂化反应过程引入甲烷,研究了甲烷对Zn-Ag/Hβ催化剂作用下稠环芳烃的加氢裂化反应过程的促进作用,并考察了甲烷引入比例、反应温度、反应压力等条件对稠环芳烃加氢反应萘转化率和苯、甲苯、二甲苯(BTX)等产物选择性的影响规律。结果表明:Zn-Ag/Hβ催化剂具有丰富的中强酸中心,负载金属Zn后分子筛存在Zn2+和进入分子筛晶体骨架的Zn物种,总酸量降低且Lewis/Brønsted(L/B)酸量比增加;在反应压力3.5 MPa、反应温度400 ℃、体积空速4 h-1、气/油体积比800、氢气和甲烷混合气氛的条件下,以萘为模型化合物在Zn-Ag/Hβ催化剂的作用下进行加氢裂化反应,萘转化率为99.82%,液体收率为80.88%;与氢气气氛下相比,BTX总选择性、苯、甲苯和二甲苯的选择性均显著提高。甲烷参与反应对提高BTX选择性和液相收率有利,促进了萘加氢裂化反应产物中含有甲基侧链产物的选择性,该研究结果为高效利用宝贵的重质油资源提供一个新的途径。  相似文献   

10.
在含HY分子筛的NiMo加氢裂化催化剂上,采用四氢萘类化合物(简称四氢萘类)及萘类化合物(简称萘类)含量不同的混合物为原料,考察四氢萘类与萘类的混合加氢裂化反应规律,并通过裂化产物中烃类物质的组成计算反应的转化率和选择性。结果表明:在四氢萘类含量相同、萘类含量增大的情况下,萘类转化率下降,四氢萘类开环生成烷基苯的选择性变化不大;在芳烃总量相当、甲基萘比例增大时,对四氢萘类异构开环生成烷基苯的抑制作用较明显。由于多环芳烃在催化剂表面的吸附系数较大,同时占据催化剂的加氢及酸性中心,抑制了四氢萘类的进一步加氢及异构反应,且异构开环反应受影响程度较大。  相似文献   

11.
通过单因素实验筛选影响费-托合成蜡加氢裂化深度的关键因素,在此基础上,采用中心复合通过单因素实验筛选影响费-托合成蜡加氢裂化深度的关键因素,在此基础上,采用中心复合实验设计考察各因素的单项、交互作用项以及平方项对费-托合成蜡加氢裂化转化率和中间馏分油(150~370 ℃)产率的影响,并调用MATLAB中的优化函数分析实验数据,确定最佳工艺条件。结果表明:在试验范围内,各因素对费-托合成蜡加氢裂化转化率影响从强到弱的顺序为:温度>液体体积空速>压力>氢蜡体积比;费-托合成蜡加氢裂化的转化率随温度、氢蜡体积比的增加而增加,随压力、液体体积空速的增加而减小;温度和压力的交互作用、液体体积空速和压力的交互作用对费-托合成蜡的裂化深度也有显著影响;确定的最佳工艺条件为温度377 ℃、压力5.0 MPa、液体体积空速1.95 h-1、氢蜡体积比820,在该条件下中间馏分油的产率达到66.3%。  相似文献   

12.
近年来国内原油进口依存度一直处于高位,原油资源需要高效利用。重质馏分油特别是渣油的高效转化至关重要,浆态床渣油加氢技术由于其能加工劣质原料且转化率高,是将重油转化为高价值运输燃料和石化产品的较好选择。重点介绍了国内外典型浆态床渣油加氢技术,包括委内瑞拉国家石油公司的HDH-Plus技术、美国环球石油公司的Uniflex技术、美国雪佛龙鲁姆斯公司的LC-Slurry技术和VRSH技术、意大利埃尼公司的EST技术、中石化石油化工科学研究院有限公司的RMAC技术,比较了上述技术的特点,分析其技术难点,建议加强浆态床渣油加氢工艺、工程和催化剂等方面的研究。  相似文献   

13.
Tetralin was chosen as a model compound to investigate the reaction networks and kinetics of hydrocracking of polynuclear aromatic hydrocarbons on modified zeolite Y based molybdenum-nickel dual functional catalysts using a continuous flow microreactor at 320-380°C, 8.5 MPa. According to the product distributions, the reaction network of hydrocracking of tetralin was proposed. The pseudo-first-order kinetics rate constants of each step in the network of hydrocracking of tetralin were evaluated by the nonlinear parameter estimation method. The results showed that reaction of hydrocracking of tetralin was a complicated parallel and serial reaction including hydrogenation, isomerization, and cracking (ring opening and dealkylation). The key steps of hydrocracking of tetralin, the conversion of double ring compounds and the yields of mono-ring compounds were affected by reaction temperature and acidity of supports on the catalysts.  相似文献   

14.
Hydrodealkylation (HDA) of the benzene-toluene-xylene (BTX) fraction of pyrolysis gasoline is an industrial route to produce benzene. Complicated kinetics of aromatic and nonaromatic hydrocarbon reactions has been experimentally investigated at the conditions of this process, employing a polyfunctional Al-Cr-KF catalyst with a high benzene selectivity, model feeds and BTX. The study reports effects of nonaromatic hydrocarbons on high temperature catalytic conversion of toluene. Above 525°C the process is found to be thermo-catalytic meaning that reactions take place on the catalyst surface and between catalyst pellets. The “pure” catalytic component of conversion is taken to be the difference between a thermo-catalytic and a thermal (i.e., without catalyst) run at the same conditions. Nonaromatic hydrocarbons substantially boost interpellet toluene HDA which is explained by a mechanism involving very fast decomposition of the nonaromatics into active radicals. The accompanying slight fall in catalytic toluene HDA, on the other hand, is considered to be due to nonaromatics and/or their hydrocracking products impeding toluene diffusion to the catalyst surface whose active centers they partially occupy. There is evidence that the C6-C8 nonaromatics of BTX influence the toluene conversion in the same manner as n-octane and cyclohexane. Benzene seems to render a small fall in surface conversion of toluene probably by inhibiting its diffusion. It apparently has no significant influence on nonaromatic hydrocracking or thermal toluene HDA. The hydrocracking products of the model feeds and BTX are 97-99 mol% C1-C4 alkanes and 1-3 mol% C2-C4 alkenes irrespective of the run type (i.e., thermal or catalytic). Moreover, given more time the hydrocracking reactions in the voids surpass those on the catalyst surface. Changing hydrogen:BTX molar ratio from 1.5 to 10 raises thermal (respectively “pure” catalytic) contribution significantly (respectively slightly) to conversions of toluene, C8 aromatics, n-octane, cyclohexane, and other C6-C8 nonaromatics.  相似文献   

15.
Abstract

Tetralin was chosen as a model compound to investigate the reaction networks and kinetics of hydrocracking of polynuclear aromatic hydrocarbons on modified zeolite Y based molybdenum–nickel dual functional catalysts using a continuous flow microreactor at 320–380°C, 8.5 MPa. According to the product distributions, the reaction network of hydrocracking of tetralin was proposed. The pseudo-first-order kinetics rate constants of each step in the network of hydrocracking of tetralin were evaluated by the nonlinear parameter estimation method. The results showed that reaction of hydrocracking of tetralin was a complicated parallel and serial reaction including hydrogenation, isomerization, and cracking (ring opening and dealkylation). The key steps of hydrocracking of tetralin, the conversion of double ring compounds and the yields of mono-ring compounds were affected by reaction temperature and acidity of supports on the catalysts.  相似文献   

16.
Abstract

Hydrodealkylation (HDA) of the benzene–toluene–xylene (BTX) fraction of pyrolysis gasoline is an industrial route to produce benzene. Complicated kinetics of aromatic and nonaromatic hydrocarbon reactions has been experimentally investigated at the conditions of this process, employing a polyfunctional Al–Cr–KF catalyst with a high benzene selectivity, model feeds and BTX. The study reports effects of nonaromatic hydrocarbons on high temperature catalytic conversion of toluene. Above 525°C the process is found to be thermo-catalytic meaning that reactions take place on the catalyst surface and between catalyst pellets. The “pure” catalytic component of conversion is taken to be the difference between a thermo-catalytic and a thermal (i.e., without catalyst) run at the same conditions. Nonaromatic hydrocarbons substantially boost interpellet toluene HDA which is explained by a mechanism involving very fast decomposition of the nonaromatics into active radicals. The accompanying slight fall in catalytic toluene HDA, on the other hand, is considered to be due to nonaromatics and/or their hydrocracking products impeding toluene diffusion to the catalyst surface whose active centers they partially occupy. There is evidence that the C6–C8 nonaromatics of BTX influence the toluene conversion in the same manner as n-octane and cyclohexane. Benzene seems to render a small fall in surface conversion of toluene probably by inhibiting its diffusion. It apparently has no significant influence on nonaromatic hydrocracking or thermal toluene HDA. The hydrocracking products of the model feeds and BTX are 97–99 mol% C1–C4 alkanes and 1–3 mol% C2–C4 alkenes irrespective of the run type (i.e., thermal or catalytic). Moreover, given more time the hydrocracking reactions in the voids surpass those on the catalyst surface. Changing hydrogen:BTX molar ratio from 1.5 to 10 raises thermal (respectively “pure” catalytic) contribution significantly (respectively slightly) to conversions of toluene, C8 aromatics, n-octane, cyclohexane, and other C6–C8 nonaromatics.  相似文献   

17.
Abstract

In a two-stage hydrocracking process, two types of catalyst are used to remove undesirable contaminants (such as S, N, hydrogenation of aromatic compounds, etc.) and convert the heavy feedstock to lighter products. In the present work, individual set of experiments were conducted to obtain information regarding activity and selectivity with emphasis on the evaluation of kinetic parameters of first- and second-stage commercial catalysts used in hydrocracking process. The performance tests were conducted in a down-flow fixed-bed hydrocracking pilot plant using a single reactor. The hydrotreating type A catalyst and hydrocracking type B catalyst were used individually with typical Kuwaiti refinery feedstocks, namely, hydrotreated vacuum gas oil (HVGO) and unconverted residual oil (UCRO), respectively. The order of reaction in this study shows first-order kinetics for HDS and HDN over CAT-A, and first-order hydrocracking conversion over CAT-B. For CAT-A the activation energies were found for HDS and HDN reactions at 22 and 27.3 kcal/gmole, while for CAT-B activation energies were 27.4 kcal/gmole.  相似文献   

18.
采用气相色谱/质谱(GC/MS)及气相色谱/场电离-飞行时间质谱(GC/FI-TOF MS)对加氢裂化全馏分产品进行表征分析,考察了全馏分产品的分子组成特点,并对其分子组成随反应深度的变化规律进行探讨。结果表明:全馏分产品中正构烷烃主要分布在C18~C40的较高碳数范围内;随转化深度的增加,异构烷烃含量大幅度增加,正构烷烃含量整体变化较小,原料中链烷烃的含量及组成直接影响尾油馏分产品BMCI值及低温流动性;在全馏分产品的环烷烃化合物中,C5~C13范围内一环环烷烃含量最高,侧链碳数大于7的一至三环环烷烃更易发生断侧链反应,趋向于转化为侧链碳数更低的环烷烃化合物;芳烃化合物主要分布在小于350 ℃馏分中,主要以烷基苯、茚满及萘满的形式存在,较少以无侧链取代苯的形式存在。  相似文献   

19.
In a two-stage hydrocracking process, two types of catalyst are used to remove undesirable contaminants (such as S, N, hydrogenation of aromatic compounds, etc.) and convert the heavy feedstock to lighter products. In the present work, individual set of experiments were conducted to obtain information regarding activity and selectivity with emphasis on the evaluation of kinetic parameters of first- and second-stage commercial catalysts used in hydrocracking process. The performance tests were conducted in a down-flow fixed-bed hydrocracking pilot plant using a single reactor. The hydrotreating type A catalyst and hydrocracking type B catalyst were used individually with typical Kuwaiti refinery feedstocks, namely, hydrotreated vacuum gas oil (HVGO) and unconverted residual oil (UCRO), respectively. The order of reaction in this study shows first-order kinetics for HDS and HDN over CAT-A, and first-order hydrocracking conversion over CAT-B. For CAT-A the activation energies were found for HDS and HDN reactions at 22 and 27.3 kcal/gmole, while for CAT-B activation energies were 27.4 kcal/gmole.  相似文献   

20.
Conclusions To study the character of the conversion of individual groups of hydrocarbons during the catalytic reforming process, an experiment was carried out in a semiworks unit consisting of two reactors connected in series, with intermediate sampling over the length of the catalyst bed.It was shown that six-member naphthenic hydrocarbons are already almost practically converted in the first reactor, and five-member hydrocarbons, in the first two reactors, Paraffinic hydrocarbons are subject to dehydrocyclization in all three reactors. The highest yield of hydrocracking products is observed in the third reactor.Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 5–9, May, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号