首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2002,50(14):3597-3608
Tests at 130 °C and 150 °C have shown that the creep resistance of an Al–Cu–Mg–Ag alloy is significantly increased if it is heat-treated at an elevated temperature to an underaged condition rather than the fully hardened, T6 temper. This beneficial effect of underageing is manifest in reduced rates of secondary creep. Similar results have been obtained for the commercial alloy 2024. Delays at ambient temperature after underageing and before testing lead to secondary precipitation and a progressive decrease in creep performance that eventually reverts to close to that for the T6 condition. This detrimental effect may be overcome by slow cooling from the underageing temperature, which arrests or impedes subsequent secondary precipitation. Microstructural observations suggest that the enhanced creep resistance in the underaged condition is a consequence of the presence of “free” solute in solid solution that is not yet involved in precipitation.  相似文献   

2.
采用自制装置对AZ81镁合金进行压入蠕变实验,通过建立稳态压入蠕变本构模型分析合金的蠕变机制,利用扫描电镜(SEM)和X射线衍射(XRD)等方法研究合金蠕变前后的组织和成分。结果表明:压铸AZ81合金在稳态蠕变阶段的应力指数n为2.08,蠕变激活能QC为87.26 kJ/mol;蠕变诱导β相首先由非连续方式析出,到达一定程度后连续析出;沿晶界析出的β相导致合金抗蠕变性能降低;蠕变温度越高,基体和析出相的晶粒尺寸越大;压铸AZ81合金的压入蠕变机制为晶界扩散主导的位错交滑移运动。  相似文献   

3.
The process of production and working environment of heat exchangers call for materials with good elevated temperature properties. However, the previous investigations were mainly focused on their room temperature properties. The relationship between microalloying and high temperature properties, especially creep properties of Al-Mn-based alloys are barely discussed. In order to improve the industrial applications of Al-Mn-based alloys, the effect of Mg, Ni and Zr additions and annealing process on the microstructure and high temperature properties of Al-Mn-based alloys were studied in this work. The investigated alloys were treated in two ways, first one is cold-rolling and heat treatment at 873 K for 10 min, and the second one is cold-rolling, heat treatment at 623 K for 1 h and 873 K for 10 min. The results indicate that annealing process has remarkable effect on the grain shape, fine equiaxed crystal grains are obtained in the former, while stable elongated grains are obtained for precipitation precedes recrystallization at 623 K in the latter. With Mg addition, more AlMnSi phase precipitated during annealing. The addition of Zr and Ni increases the type and amount of heat resistant compounds, precipitate Al3Zr and AlMnSiNi, which are beneficial to improving high temperature properties of Al-Mn alloy. Al-Mn-0.3Mg-0.2Ni alloy has the best elevated temperature properties, and the tensile strength of it is 102 MPa (50 MPa higher than Al-Mn alloy) at 523 K. And the steady-creep rate is strongly decreased to 3.93x10(-8) s(-1), two orders of magnitude smaller than Al-Mn alloy at the temperature of 523 K under the stress of 40 MPa. With dispersoids complicated or increased, the movement of dislocations are pinned strongly, which are contribute to improving the creep properties of Al-Mn alloy for the creep is mainly controlled by dislocation climb.  相似文献   

4.
ZnAl27合金基复合材料高温蠕变性能研究   总被引:2,自引:0,他引:2  
利用HBE-750型高低温硬度仪和H-800型TEM研究了SiC  相似文献   

5.
纳米压痕法测量锌铝钎料的室温蠕变应力指数   总被引:2,自引:0,他引:2       下载免费PDF全文
利用纳米压痕技术,采用恒加载速率法,研究了Zn-22Al和Zn-22Al-0.03Ti钎料的室温蠕变行为,并对相关数据进行了测量和计算.结果表明,室温时任一载荷条件下保载时,钎料均发生了明显的蠕变行为.其中Zn-22Al-0.03Ti钎料的压入深度和蠕变位移均小于Zn-22Al钎料,最大差值分别为15.68%和26.87%.相同保载时间不同载荷保载时,两种钎料的蠕变位移均有较大差异.通过拟合计算分别获得了两种钎料室温时的蠕变应力指数,Zn-22Al-0.03Ti较Zn-22Al提高了35.79%.分析认为,Ti元素的添加导致了Zn-22Al钎料晶粒的细化,从而产生了更多的晶界是导致钎料室温抗蠕变能力提高的主要原因.  相似文献   

6.
The bending deformation method was adopted to characterize the creep deformation behavior of Al−Cu−Li alloy in the creep aging forming (CAF) process based on a series of CAF tests, and the evolution laws of its mechanical properties and microstructures under different pre-deformation conditions were studied. The results show that the bending creep strain characterization method can intuitively describe the creep variation. With the increase of the pre-deformation strain, the creep strain of the specimen firstly increases and then decreases. The increase of the pre-deformation strain can promote the course of aging precipitation, and improve the formed alloy’s tensile properties at room temperature, the Kahn tearing properties, and the fatigue propagation properties. Pre-rolled specimens produce a slightly weaker work hardening than pre-stretched specimens, but they also create a stronger aging-strengthening effect; thus the strength, toughness and damage performance can be improved to some extent. Among all the types of specimens, the specimen with 3% rolling after CAF treatment has the best comprehensive mechanical properties.  相似文献   

7.
The elevated temperature performances of 2D70 Al alloy hot extrusion rods after two-stage homogenization and intensive deformation were studied by measuring the elevated temperature enduring strength and the creep ultimate strength. The fracture morphology of some selected samples after testing at different elevated temperatures was observed by scanning electron microscopy (SEM). The results indicate that, as the test temperature increases, the elevated temperature enduring strength of 2D70 Al alloy decreases gradually. In a comparison between 150 C and 240 C, the notch enduring strength drops from 375 to 185 MPa and the smooth enduring strength drops from 337 to 130 MPa. Enduring strength is not sensitive to the notch. The notch sensitivity ratio (NSR) coefficient is in the range of 1.119 to 1.423 from 150 C to 240 C. The creep test results show that, as the test temperature increases from 150 C to 240 C, the creep ultimate strength of 2D70 Al alloy rods drops gradually from 312 to 117 MPa.  相似文献   

8.
采用高温蠕变装置,研究了Mg-6Al-1Nd-1.5Gd合金在150、175、200℃以及50、70、90 MPa条件下的高温压缩蠕变行为,分析合金在高温蠕变过程中的蠕变机制。结果表明,Mg-6Al-1Nd-1.5Gd合金的平均应力指数及蠕变激活能分别为4.64和73.87kJ/mol,其主要蠕变机制是由位错攀移和晶界扩散共同作用,合金的蠕变本构方程为:ε=1.877×10-8σ4.641exp[-73 865/(RT)];合金在高温蠕变过程中,微观组织中的位错密度逐渐增大,出现位错缠结及位错堆积,合金蠕变后的晶粒变得粗大,金属间化合物Al3Nd和Al3Gd在晶界上出现偏聚。  相似文献   

9.
As-cast microstructure and mechanical properties of Mg-6Zn-2Al-0.3Mn (ZA62) alloys with calcium addition were investigated.The as-cast microstructure of the base alloy ZA62 consists of the α-Mg matrix and eutectic phase Mg51Zn20.The Mg51Zn20 eutectic was gradually replaced by MgZn phase and Mg32(Al,Zn)49 phase when calcium is added into the base alloy.Further addition of calcium leads to the increase of grain boundary phases and formation of a new quaternary Mg-Zn-Al-Ca eutectic compound.In comparison with the base alloy,the increase of calcium addition to the base alloy results in the reduction of both strength and ductility at ambient temperature,but increase at elevated temperatures due to the thermal stability of Ca-containing phases.At elevated temperatures,the creep resistance of ZA62 based alloys containing calcium is significantly higher than that of AZ91 which is the most commonly used magnesium alloy.  相似文献   

10.
采用自制实验装置对Mg-Al-2RE(AE42)合金进行压入蠕变实验,利用带能谱(EDS)的扫描电镜(SEM)和X射线衍射(XRD)分析合金蠕变前后的组织和成分的演化.结果表明:随温度或应力的增加,AE42合金的压入蠕变速率和第一阶段的蠕变量逐渐增加;合金在压入状态下的蠕变应力指数和蠕变激活能的均值分别为3.06和72.4 kJ/mol;压入条件下AE42合金的稳态蠕变速率由晶界扩散主导的位错粘滞性滑移控制;铸态AE42合金由α-Mg基体、针状Al11La3和少量颗粒状Al2La组成;固溶处理8 h后,合金中的β-Mg17Al12相溶入α-Mg基体,合金的硬度上升;固溶24 h后,晶粒得到粗化,合金的硬度和抗蠕变性能均下降;固溶处理后再人工时效24 h,晶粒略有细化,但大量β-Mg17Al12相沿晶界不连续析出,合金的硬度和抗蠕变性能进一步下降.  相似文献   

11.
1 INTRODUCTIONMg Lialloyisanewandsuper lightstructuralma terial.Itiswidelyusedinspaceandweaponindustrybecauseofhigherspecificstrengthandrigidity .Someresearch[1~8] indicatedthat:1 )thestrengthofbinaryalloyislowerandthecreepresistanceisverypoor;2 )thestrengthca…  相似文献   

12.
高温下Mg17,Al12相的热稳定性较差及其不连续析出是Mg-Al基合金耐热性较差的主要原因。通过添加合金元素以抑制Mg17Al12相的析出,并生成高热稳定性的金属间化合物分布在晶界和基体,以阻止高温下晶界和位错的运动,是提高Mg-Al合金高温性能的主要途径。详细叙述了Mg-Al基合金中的蠕变现象和合金化对Mg-Al基合金耐热性的影响。  相似文献   

13.
利用光学显微镜、扫描电子显微镜、能谱分析、X射线衍射、差热分析及拉伸试验比较分析了2%Sn(质量分数)对真空压铸和固溶态Mg-7Al合金的组织与力学性能的影响。结果表明,向Mg-7Al合金中添加2%Sn元素后,能够细化晶粒,抑制Mg17Al12相的生长,在组织中形成新相Mg2Sn,其以颗粒状弥散分布于基体中;固溶处理后Mg-7Al合金中第二相数目明显减少,AT72合金基体中仍存在细小颗粒状Mg2Sn。由于合金组织细化、第二相数量的增加,Mg17Al12相形貌改善以及具有良好热力学性质的Mg2Sn相的析出的综合作用,使得AT72合金表现出比Mg-7Al合金更好的室温及高温拉伸力学性能;固溶处理后的AT72合金表现出更为优异的力学性能,主要强化机制包括:固溶强化和弥散强化。此外,利用第一性原理计算从微观理论角度探讨了Sn合金化Mg-7Al合金力学性能改善的原因。  相似文献   

14.
1. IntroductionIron aluminides based on Fe3AI have been interested since the 1930's when their excellent oxidation resistance was first .oted[1'2]. However, poor high--temperature creepresistance is one.of major deterrents to their development as structural materials. Recentdevelopmental efforts have indicated that the creep resistance can be improved by alloyingprocesses, and the effect of some elements such as Cr, Mo, W, Nb, or Zr on the creep resistance of Fe3AI has been investigated re…  相似文献   

15.
A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed.  相似文献   

16.
The thermal stability and creep behavior of Ti–35V–15Cr (35V alloy) and Ti–25V–15Cr (25V alloy) burn-resistant titanium alloys are researched. The results show that post-exposure tensile properties deteriorated with the increase in exposure temperature (450–600 °C). The decrease in tensile properties of the 35V alloy results from the combination of surface oxidation and microstructural changes and the decrease in tensile properties of the 25V alloy results from surface oxidation. The main change of the microstructure during thermal exposure is the heterogeneous precipitation of α phase on β grain boundaries. Increased vanadium content in the alloy shows an adverse effect on alloys’ thermal stability. The creep resistance of the 35V alloy is little better that that of the 25V alloy. During creep exposure at 540 °C for 100 h, the heterogeneous precipitation of α phase on β grain boundaries in 35V alloy strengthens the grain boundary, leading to increases in the creep resistance, while the heterogeneous precipitation of α phase in grains and grain boundaries in the 25V alloy is rod-like, leading to decreases in the creep resistance.  相似文献   

17.
The creep resistance of the alloy Mg-4Al-2RE-2Ca(AEC422) and the base alloy AE42 was studied. The results reveal that the precipitated phases of AEC422 consist of Al2La and Al2Ca by contrast with the precipitated phase Al11La3 in AE42, which is instable and decomposes to A1l2La and Al at high temperature. Creep resistance of AEC422 is significantly improved compared with that of AE42. The microstructure of AEC422 has no obvious changes after creep test at 175℃ and 70MPa, as compared to that before creep test, indicating that Al2La and Al2Ca have high thermal stability. Especially Al2Ca phase largely increases the strength of the grain boundaries in AEC422, which accounts for the creep resistance improvement.  相似文献   

18.
本文研究了硼对Fe-H42Ni-12Cr-4W-1.5Mo-4.5Ti-2Al合金热强性的影响,结果表明:硼在合金中以固溶及二次硼化物状态存在可以提高合金的持久性能;而以一次硼化物存在对合金的持久强度并无贡献,过多的一次硼化物还会引起持久性能降低。 试验结果还表明,该合金固溶温度升高引起的持久性能提高,是由于晶界二次硼化物浓度增加所引起的。在试验的晶粒度范围内,单纯的晶粒长大并不能引起持久性能的提高。  相似文献   

19.
筋板类LY12铝合金零件蠕变时效成形有限元分析   总被引:1,自引:0,他引:1  
蠕变时效成形技术对于航空航天器件中大型复杂整体壁板类零件的制造具有独特优势,被认为是大型飞机特别重要的金属成形工艺之一。文章利用自行设计的工装,经试验确定了LY12铝合金的最佳蠕变时效成形温度;通过蠕变拉伸试验,得出LY12铝合金材料在最佳温度下的蠕变本构方程中的材料常数,并应用有限元软件ABAQUS分析了筋板类LY12铝合金零件的弯曲蠕变过程及回弹效应。  相似文献   

20.
《Intermetallics》2000,8(4):427-437
Hot hardness and creep studies were carried out on Fe3Al and Fe3Al containing Cr or Ti. Indentation and impression creep testing methods were employed to characterize the creep behaviour. Compared to the binary alloy, Fe3Al–Cr exhibits a lower hardness indicating solid-solution softening effect of Cr. On the other hand, solid-solution hardening effect of Ti is significant in the temperature range 300–900 K. Results from indentation creep indicates that a power-law creep behaviour (n between 6 and 8) is observed in the binary and Cr containing alloys at temperatures greater than 753 K. At lower temperatures in the above two alloys and in the Ti-containing alloy even at higher temperatures, there is a power-law break down. On the other hand at low stress levels covered in the impression creep studies, power-law creep is observed in all the alloys in the stress and temperature range of investigation. Under these conditions, all the alloys exhibit a stress exponent value of around 3 for the steady state creep rate. The activation energy for creep is estimated to be in the range 325 and 375 kJ mol. Among the alloys studied, Fe3Al–Ti exhibits the best creep resistance. The results indicate that in the B2 region, viscous glide controls the creep rate at low stresses while climb of dislocations may be rate controlling at higher stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号