首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Path recovery aims at helping network operators automatically detecting and recovering from faults before human being’s intervening, and therefore can before customers notice these faults. By applying some algorithm of recovery, service provider (SP) can enhance the speed of repair and save paying refunds against broken service level agreement (SLA). Fast restoration of traffic after a network failure is a crucial aspect of current and future IP and transport networks. Recently, there is a…  相似文献   

2.
In this paper, we study the path-based shared protection (PBSP) and the link-based Hamiltonian cycle protection (LBHCP) schemes for tolerating single-link failures in survivable wavelength-division-multiplexing networks. Although previous work indicated that PBSP can perform better than link-based shared protection including the case of LBHCP, from theoretical analysis and simulation results in this paper, we can clearly see that this indication of previous work is not suitable for LBHCP since it can have a better resource utilization ratio and a faster recovery time than PBSP. Therefore, the new result of this paper is a modification for the previous inaccurate idea and it also can well guide future work of researchers.
Xingwei WangEmail: Email:
  相似文献   

3.
4.
Conventional optical networks are based on SONET rings, but since rings are known to use bandwidth inefficiently, there has been much research into shared mesh protection, which promises significant bandwidth savings. Unfortunately, most shared mesh protection schemes cannot guarantee that failed traffic will be restored within the 50-ms timeframe that SONET standards specify. A notable exception is the p-cycle scheme of Grover and Stamatelakis. We argue, however, that p-cycles have certain limitations, e.g., there is no easy way to adapt p-cycles to a path-based protection scheme, and p-cycles seem more suited to static traffic than to dynamic traffic. In this paper we show that the key to fast restoration times is not a ring-like topology per se, but rather the ability to pre-cross-connect protection paths. This leads to the concept of a pre-cross-connected trail or PXT, which is a structure that is more flexible than rings and that adapts readily to both path-based and link-based schemes and to both static and dynamic traffic. The PXT protection scheme achieves fast restoration speeds, and our simulations, which have been carefully chosen using ideas from experimental design theory, show that the bandwidth efficiency of the PXT protection scheme is comparable to that of conventional shared mesh protection schemes.  相似文献   

5.
针对现有可生存虚拟网络链路保护方法无差别对待所有虚拟链路、备份资源消耗多且故障后网络恢复时延长的问题,该文提出一种核心链路感知的可生存虚拟网络链路保护(CLA-SVNLP)方法。首先,综合考虑虚拟链路动态和静态两方面因素构建虚拟链路核心度度量模型,依据虚拟网络生存性需求,对核心度较高的虚拟链路进行备份保护;其次,将p圈引入可生存虚拟网络链路保护,依据虚拟网络特点构建p圈,为核心虚拟链路提供1:N保护,即每条核心虚拟链路平均消耗1/N条的备份链路带宽资源以减少备份链路资源消耗,并将单物理链路保护问题转化为多个p圈内的单虚拟链路保护问题;最后网络编码技术与p圈结合,将备份链路对核心虚拟链路提供的1:N保护转化为1+N保护,避免了故障后定位、检测及数据重传。仿真结果表明,该方法提高了备份资源利用率且缩短了故障后的网络恢复时延。  相似文献   

6.
In MPLS/GMPLS networks, a range of restoration schemes will be required to support different tradeoffs between service interruption time and network resource utilization. In light of these tradeoffs, path-based end-to-end shared mesh restoration provides a very attractive solution. However, efficient use of bandwidth for shared mesh restoration strongly relies on the procedure for selecting restoration paths. We propose an efficient restoration path selection algorithm for restorable connections over shared bandwidth in a fully distributed MPLS/GMPLS architecture. We also describe how to extend MPLS/GMPLS signaling protocols to collect the necessary information efficiently. To evaluate the algorithm's performance, we compare it via simulation with two other well-known algorithms on a typical intercity backbone network. The key figure of merit for restoration bandwidth efficiency is restoration overbuild, i.e., the extra bandwidth required to meet the network restoration objective as a percentage of the bandwidth of the network with no restoration. Our simulation results show that our algorithm uses significantly less restoration overbuild (63%-68%) compared with the other two algorithms (83%-90%).  相似文献   

7.
Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.  相似文献   

8.
A resource-efficient provisioning framework (RPF) is proposed in this paper for optical networks providing dedicated path protection (DPP) and shared path protection (SPP) services. The framework reduces resource consumption by considering spare capacity reservation of DPP and SPP cooperatively while provides 100% survivability guarantee and maintains the recovery time for both protection types against the predominant single link failures. To tackle the service provisioning problem under the framework, an integer linear programming (ILP) formulation is presented to find the optimal routing solution for a given set of traffic demands. The objective is to minimize total capacities consumed by working and backup paths of all demands. Then, heuristics are developed for on-line routing under dynamic change of traffic. Numerical results show that compared with traditional provisioning framework (TPF), the RPF has the following advantages: 1) Over 10% capacity savings are achieved for static service provisioning; 2) blocking probability of both protection types is greatly reduced; 3) lower resource overbuild is achieved; and 4) average backup-path hop distance of shared-path-protected flows is reduced. Finally, network survivability in face of double link failures is discussed under the framework.   相似文献   

9.
Hybrid survivability approaches for optical WDM mesh networks   总被引:1,自引:0,他引:1  
This paper studies the problem of providing recovery from link failures in optical wavelength division multiplexing (WDM) networks. One of the widely studied mechanisms is dynamic link restoration, which provides recovery by determining restoration paths around a link after a failure occurs. This mechanism leads to a lower backup resource utilization, fast failure signaling rate, and a scalable operation. However, one of the main drawbacks of uncoordinated dynamic restoration is the inability to provide a 100% recovery for all connections, especially at high network loads. An alternate solution is proactive protection, where backup capacity is reserved during connection setup that can guarantee recovery under certain conditions (e.g., single link failures) but requires higher backup capacity and has low spare capacity utilization when failures do not occur. This paper presents two hybrid survivability approaches that combine the positive effects of restoration and protection. The proposed algorithms make use of available or collected network state information, such as link load, to identify critical links or segments in the network that are then proactively protected. The overall goal of the proposed approaches is to improve the restoration efficiency by providing a tradeoff between proactive protection and dynamic restoration. This paper presents a detailed performance analysis of the proposed algorithms. Experimental results show that under high loads, both the proposed approaches maintain a consistent restoration efficiency of at least 10%, or higher, when compared to the basic restoration scheme.  相似文献   

10.
This paper investigates the challenges for developing the current local area network (LAN)-based Ethernet protocol into a technology for future network architectures that is capable of satisfying dynamic traffic demands with hard service guarantees using high-bit-rate channels (80...100 Gb/s). The objective is to combine high-speed optical transmission and physical interfaces (PHY) with a medium access control (MAC) protocol, designed to meet the service guarantees in future metropolitan-area networks (MANs). Ethernet is an ideal candidate for the extension into the MAN as it allows seamless compatibility with the majority of existing LANs. The proposed extension of the MAC protocol focuses on backward compatibility as well as on the exploitation of the wavelength domain for routing of variable traffic demands. The high bit rates envisaged will easily exhaust the capacity of a single optical fiber in the C band and will require network algorithms optimizing the reuse of wavelength resources. To investigate this, four different static and dynamic optical architectures were studied that potentially offer advantages over current link-based designs. Both analytical and numerical modeling techniques were applied to quantify and compare the network performance for all architectures in terms of achievable throughput, delay, and the number of required wavelengths and to investigate the impact of nonuniform traffic demands. The results show that significant resource savings can be achieved by using end-to-end dynamic lightpath allocation, but at the expense of high delay.  相似文献   

11.
Priority-based Dynamic Lightpath Allocation for Survivable WDM Networks   总被引:2,自引:0,他引:2  
In recent years, there has been considerable research interest in the design of survivable wavelength division multiplexing (WDM) networks. Many papers have proposed mixed-integer linear program (MILP) formulations as well as heuristics to optimally allocate lightpaths, using protection based schemes. Such schemes provide quick and guaranteed recovery, but do not use resources efficiently. About 50% of allocated resources remain idle, under fault-free conditions. If these “idle” resources were used for low-priority connections (which could be pre-empted if necessary), the resource utilization would improve significantly. This paper introduces two MILP formulations for priority-based dynamic lightpath allocation in survivable WDM networks. We define three different levels of service and allocate resources based on the requested service level. An important advantage of our approach is that while we can handle multiple levels of service, the traditional (single level) shared and dedicated path protection schemes can be treated simply as a special case of the proposed formulations. The first formulation solves the problem optimally, but is quite time consuming. The second formulation makes some simplifications, and is more efficient. The results demonstrate that our approach can significantly improve resource utilization and is feasible for practical sized networks, particularly under low- to medium-traffic load. For large networks and high traffic conditions, simpler heurtistic algorithms are more appropriate. In such cases, the proposed MILP formulation can be a useful tool to validate the performance of the heuristics.  相似文献   

12.
Protection approaches for dynamic traffic in IP/MPLS-over-WDM networks   总被引:3,自引:0,他引:3  
Due to the explosive growth of data-related traffic driven by the Internet, network reliability becomes an important issue. We investigate various protection approaches to handle failures for dynamic traffic demands in IP/MPLS-over-WDM networks. An LSP can be protected at either the IP/MPLS layer or the optical layer. In IP/MPLS layer protection, an LSP is protected by providing a link-disjoint backup LSP between its end nodes. In optical layer protection, an LSP is protected by the backup lightpath of each lightpath traversed by the LSP. We present two integrated routing algorithms: hop-based integrated routing algorithm and bandwidth-based integrated routing algorithm (BIRA) to set up the restorable bandwidth-guaranteed paths efficiently. Then we present a multilayer protection scheme for multiclass traffic in such networks. This scheme takes into account the different QoS and recovery requirements of the traffic to provide protection capability either at the MPLS layer or at the optical layer in a cost-effective manner. We use the connection blocking probability and number of optical-electrical-optical conversions as performance metrics to compare various protection approaches.  相似文献   

13.
Ahn  Gaeil  Jang  Jongsoo  Chun  Woojik 《Telecommunication Systems》2002,19(3-4):481-495
The path recovery in MPLS is the technique to reroute traffic around a failure or congestion in a LSP. Currently, there are two kinds of model for path recovery: rerouting and protection switching. The existing schemes based on rerouting model have the disadvantage of more difficulty in handling node failures or concurrent node faults. Similarly, the existing schemes based on protection switching model have some difficulty in solving problem such as resource utilization and protection of recovery path. This paper proposes an efficient rerouting scheme to establish a LSP along the least-cost recovery path of all possible alternative paths that can be found on a working path, which is calculated by the upstream LSR that has detected a failure. The proposed scheme can increase resource utilization, establish a recovery path relatively fast, support almost all failure types such as link failures, node failures, failures on both a working path and its recovery path, and concurrent faults. Through simulation, the performance of the proposed scheme is measured and compared with the existing schemes.  相似文献   

14.
In an optical WDM mesh network, different protection schemes (such as dedicated or shared protection) can be used to improve the service availability against network failures. However, in order to satisfy a connections service-availability requirement in a cost-effective and resource-efficient manner, we need a systematic mechanism to select a proper protection scheme for each connection request while provisioning the connection. In this paper, we propose to use connection availability as a metric to provide differentiated protection services in a wavelength-convertible WDM mesh network. We develop a mathematical model to analyze the availabilities of connections with different protection modes (i.e., unprotected, dedicated protected, or shared protected). In the shared-protection case, we investigate how a connection's availability is affected by backup resource sharing. The sharing might cause backup resource contention between several connections when multiple simultaneous (or overlapping) failures occur in the network. Using a continuous-time Markov model, we derive the conditional probability for a connection to acquire backup resources in the presence of backup resource contention. Through this model, we show how the availability of a shared-protected connection can be quantitatively computed. Based on the analytical model, we develop provisioning strategies for a given set of connection demands in which an appropriate, possibly different, level of protection is provided to each connection according to its predefined availability requirement, e.g., 0.999, 0.997. We propose integer linear programming (ILP) and heuristic approaches to provision the connections cost effectively while satisfying the connections' availability requirements. The effectiveness of our provisioning approaches is demonstrated through numerical examples. The proposed provisioning strategies inherently facilitate the service differentiation in optical WDM mesh networks.  相似文献   

15.
医院的医疗信息覆盖面广,数据量大,一旦数据破坏或丢失、就会给医院造成不可估量的损失,但传统的容灾方案存在建设难度高、成本居高不下、后期系统维护成本高等问题。为了解决这些问题,利用虚拟化技术进行容灾备份系统建设是降低建设成本、提高资源利用率的有效方法。采用持续数据保护和虚拟机技术共同构建医院信息系统高可用集群,充分利用现有设备,可以有效地实现医院信息系统的高可用性和数据的实时备份,同时节约了成本,保证工作的不间断运行。  相似文献   

16.
As the size and the complexity of optical mesh networks are continuing to grow and the severe natural disasters are occurring more frequently in recent years, multiple failures (link failures or node failures) become increasing probable. Protection strategies against these failures generally provision backup paths for working paths based on link-disjointness or node-disjointness. Compared with link-disjoint protection, node-disjoint protection means higher degree of risk isolation and can accommodate both link failures and node failures. This motivates us to propose a hybrid node-disjoint protection, named Segment and Path Shared Protection (SPSP), to provide 100% protection against arbitrary simultaneous double-node failures (the worst double-failure case). For each service connection request, SPSP first provisions backup segments for the working segments, respectively, as the primary backup resources, then provisions a single backup path for the whole working path as the second backup resource. In addition to its complete protection capability and flexible scalability for double failures, SPSP can also obtain better network load balance and resource sharing degree by dynamic link-cost adjustment and reserved backup resource sharing. Simulation results show that SPSP can achieve a shorter average recovery time than path shared protection (PSP) and higher resource utilization and lower blocking probability than segment shared protection (SSP).  相似文献   

17.
J. Geffard 《电信纪事》2001,56(3-4):140-149
The problem of assigning single paths to point to point demands in a network arises in the telecommunications industry. The well known atm technology involves such a problem when each demand must be assigned to a single virtual channel in an atm backbone network. This problem is referred to as the Bandwidth Packing Problem. For a given network and a set of point to point demands with related bandwidth requirement and profit, the problem consists in determining the most rewarding subset of demands for which all demands are single path routed according to the link capacity constraints. We propose a heuristic derived from an exact method to solve this problem. We use cutting planes to strengthen a path-based linear relaxation embedded in a Branch&Cut scheme. The results particularly depend on the ratio of the average edge capacity to the average bandwidth required by the demands. The method provides optimum or nearly optimum solutions for practical telecommunications problems within small computational time.  相似文献   

18.
Achieving fast and bandwidth-efficient shared-path protection   总被引:4,自引:0,他引:4  
Dynamic provisioning of restorable bandwidth guaranteed paths is a challenge in the design of broad-band transport networks, especially next-generation optical networks. A common approach is called (failure-independent) path protection, whereby for every mission-critical active path to be established, a link (or node) disjoint backup path (BP) is also established. To optimize network resource utilization, shared path protection should be adopted, which often allows a new BP to share the bandwidth allocated to some existing BPs. However, it usually leads the backup paths to use too many links, with zero cost in term of additional backup bandwidth, along its route. It will violate the restoration time guarantee. In this paper, we propose novel integer linear programming (ILP) formulations by introducing two parameters (/spl epsi/ and /spl mu/) in both the sharing with complete information (SCI) scheme and the distributed partial information management (DPIM) scheme. Our results show that the proposed ILP formulations can not only improve the network resource utilization effectively, but also keep the BPs as short as possible.  相似文献   

19.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

20.
This letter studies the protection problem in WDM mesh networks and proposes a new scheme called improved path-based shared protection (IPSP) to tolerate double-link failures. Differing from previous path-based shared protection (PSP), IPSP allows some primary and backup paths to share resources. Simulation results show that IPSP outperforms PSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号