首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
In WDM networks, path protection has emerged as a widely accepted technique for providing guaranteed survivability of network traffic. However, it requires allocating resources for backup lightpaths, which remain idle under normal fault-free conditions. In this paper, we introduce a new design strategy for survivable network design, which guarantees survivability of all ongoing connections that requires significantly fewer network resources than protection based techniques. In survivable routing, the goal is to find a Route and Wavelength Assignment (RWA) such that the logical topology remains connected for all single link failures. However, even if the logical topology remains connected after any single link fault, it may not have sufficient capacity to support all the requests for data communication, for all single fault scenarios. To address this deficiency, we have proposed two independent but related problem formulations. To handle our first formulation, we have presented an Integer Linear Program (ILP) that augments the concept of survivable routing by allowing rerouting of sub-wavelength traffic carried on each lightpath and finding an RWA that maximizes the amount of traffic that can be supported by the network in the presence of any single link failure. To handle our second formulation, we have proposed a new design approach that integrates the topology design and the RWA in such a way that the resulting logical topology is able to handle the entire set of traffic requests after any single link failure. For the second problem, we have first presented an ILP formulation for optimally designing a survivable logical topology, and then proposed a heuristic for larger networks. Experimental results demonstrate that this new approach is able to provide guaranteed bandwidth, and is much more efficient in terms of resource utilization, compared to both dedicated and shared path protection schemes.  相似文献   

2.
Dynamic Survivability in WDM Mesh Networks Under Dynamic Traffic   总被引:3,自引:0,他引:3  
Network survivability is a crucial requirement in WDM mesh networks. In this paper, we systematically consider the problem of dynamic survivability with dynamic single link failure in WDM networks under dynamic traffic demands. Specifically, we investigate various protection schemes, such as dedicated path protection (DPP), shared path protection (SPP), dedicated link protection (DLP), shared link protection (SLP), and two restoration schemes, path restoration (PR) and link restoration (LR). Moreover, two new shared protection methods are proposed, i.e., SRLG-based shared link protection (SRLG-SLP) and SRLG-based shared path protection (SRLG-SPP). The SRLG (shared risk link group) constraint defines the availability of protection resources to a working path, which requires that any two working paths sharing the same risk of failure (or in the same SRLG) cannot share the same protection resources. Furthermore, in our study, we consider a more practical dynamic single-link failure model, in which the link-failure-interarrival time and link-failure-holding time are considered as two independent parameters. Based on this link-failure model, extensive simulations are done to analyze and compare the dynamic survivable performance of various protection and restoration schemes. Resource utilization, protection efficiency, restoration efficiency, and service disruption ratio are employed as survivable performance metrics versus traffic load, link-failure frequency, and link-failure reparation time to evaluate the survivable performance. Many meaningful results are given. In addition, we show that the developed SRLG-SLP and SRLG-SPP protection schemes perform very well in terms of protection efficiency and service disruption ratio, while sacrificing some performance in terms of resource utilization.  相似文献   

3.
Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risk-link-group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.  相似文献   

4.
光纤链路由于共享了相同的物理资源,因此具有一定的故障相关性。这种故障相关性可以用相关链路失效概率(Correlated Link Failure Probability,CLFP)来表示。在CLFP基础上,该文研究了WDM抗毁网中双链路失效问题,提出了一种新的支持用户区分可靠性(Differentiated Reliability,DiR)的共享通路保护算法:SPPDLF-DiR (Shared-Path Protection for Dual-Link Failures with DiR)。仿真表明,SPPDLF-DiR在满足用户区分可靠性要求的前提下,能有效地提高资源利用率和降低业务阻塞率。  相似文献   

5.
Shared protection in mesh WDM networks   总被引:1,自引:0,他引:1  
This article introduces the design principles and state-of-the-art progress in developing survivable routing schemes for shared protection in mesh WDM networks. This article first gives an overview of the diverse routing problem for both types of protection in mesh networks, path-base and segment shared protection; then the cost function and link state for performing diverse routing are defined by which the maximum extent of resource sharing can be explored in the complete routing information scenario. Review is conducted on the most recently reported survivable routing schemes along with state-of-the-art progress in diverse routing algorithms for segment shared protection. The following three reported algorithms are discussed in detail: iterative two-step-approach, potential backup cost, and maximum likelihood relaxation.  相似文献   

6.
Differentiated QoS for survivable WDM optical networks   总被引:1,自引:0,他引:1  
Optical networks based on WDM technology have become a promising solution to realize transport networks that can meet the ever-increasing demand for bandwidth. As WDM networks carry a huge volume of traffic, maintaining a high level of survivability is an important and critical issue. The. development of GMPLS switching technology led to the direct integration of IP and WDM. In these IP-over-WDM networks different applications/end users need different levels of fault tolerance and differ in how much they are willing to pay for the service they get. The current trend in network development is moving toward a unified solution providing support for voice, data, and various multimedia services. Therefore, it imperative that WDM networks incorporate fault tolerance to single or multiple component failures, protection bandwidth, recovery time, and recovery granularity besides resource utilization and call acceptance ratio. This article presents a survey of various methods that have been proposed for providing service differentiation in survivable WDM networks and discuss their performance. Such methods are broadly classified under various paradigms such as differentiated reliability, R-connections, quality of protection, and quality of recovery.  相似文献   

7.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

8.
研究了多域光网络中的路由保护问题。为了避免多域光网络通路保护二步算法可能导致的多域陷阱问题,提出了一种基于Suurballe算法扩展的多域联合路由保护算法。仿真表明,相比传统的多域通路保护二步算法,该算法资源利用率高,阻塞率低,平均每连接跨域数小。  相似文献   

9.
This paper focuses on the survivable routing problem in WDM mesh networks where the objective is to minimize the total number of wavelengths used for establishing working and protection paths in the WDM networks. The past studies for survivable routing suffers from the scalability problem when the number of nodes/links or connection requests grows in the network. In this paper, a novel path-based shared protection framework, namely inter group shared protection (I-GSP), is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy. Optimization is performed on these PGs such that sharing of protection wavelengths is considered not only inside a PG, but between the PGs. Simulation results show that I-GSP based integer linear programming model, namely, ILP-II solves the networks in a reasonable amount of time for which a regular integer linear programming formulation, namely, ILP-I becomes computationally intractable. For most of the cases the gap between the optimal solution and the ILP-II stays within 6%. The proposed ILP-II model yields a scalable solution for the capacity planning in the survivable optical networks based on the proposed I-GSP protection architecture.  相似文献   

10.
何荣希  温海波 《电子学报》2005,33(4):613-619
服务等级约定(SLA)是用户与服务提供者之间达成的有关服务内容、服务质量等方面的合约,它规定了服务提供者必须为用户提供的具体服务参数.连接可靠性和恢复时间是涉及生存性问题的两个重要SLA参数,如何保证用户请求的连接可靠性和恢复时间要求以避免违约而受到惩罚,同时又最大限度地降低成本是服务提供者最关心的问题之一.针对上述问题,本文提出一种动态约束共享通路保护算法(DCSP)加以解决.DCSP同时考虑用户提出的上述两个SLA参数要求,利用K路由和部分链路分离保护思想为它们动态提供区分服务.DCSP既能保证用户的服务要求,同时又有利于全网负载均衡和提高资源利用率.最后对所提算法进行了仿真研究,给出了仿真结果.  相似文献   

11.
针对WDM网络中单链路出错的生存性流量疏导问题,提出了一种基于连接的动态恢复机制(DRAC).DRAC不预留任何资源,当链路出错时,通过在网络中动态的发现资源来对错误进行恢复,将一个出错连接转发到一条新的多跳路径.仿真结果显示,提出的这种动态恢复机制拥有很高的恢复概率.  相似文献   

12.
In this paper, the authors focus on studying the problem of survivable routing provisioning to prevent single link failure in wavelength-division-multiplexing (WDM) mesh networks, and propose a novel protection scheme called mixed shared path protection (MSPP). With MSPP, the authors define three types of resources: 1) primary resources that can be used by primary paths; 2) spare resources that can be shared by backup paths; and 3) mixed resources that can be shared by both the primary and the backup paths. In the proposed protection scheme, each connection is assigned a primary path and a link disjoint backup path. Differing from pervious protection schemes, MSPP allows some primary paths and backup paths to share the common mixed resources if the corresponding constraints can be satisfied. In this paper, the authors consider three types of path-based protection schemes, i.e., dedicated path protection (DPP), shared path protection (SPP), and MSPP, and evaluate their performance for both the static and the dynamic provisioning problems. Simulation results show that MSPP outperforms DPP and SPP.  相似文献   

13.
Previous research on survivability with differentiated reliability in wavelength-division-multiplexing (WDM) optical mesh networks mostly considered the failure probability of a fiber link with the link length that may not be a good solution for consideration of shared-risk link groups (SRLGs). In this paper, we propose a new model of failure probability with the SRLG constraints in WDM optical mesh networks. Based on this model, we present the backup resources assignment and the routing selection method with the differentiated reliable requirements of users. To evaluate the performances of this model, we propose a novel survivable routing algorithm called partial SRLG-disjoint protection (PSDP) to tolerate the single-SRLG failure. Compared with the previous algorithm, PSDP can obtain a better resource utilization ratio and lower blocking probability. Simulation results are shown to be promising.  相似文献   

14.
该文首先探讨了抗毁WDM网中支持QoS的分层图模型,在此基础上提出一种抗毁WDM网中支持QoS的选路和波长分配算法。该算法根据上层业务不同的QoS要求,对其光路建立请求区别对待,以满足它们不同的阻塞率和恢复率要求。计算机仿真结果表明该算法既满足了上层业务不同的QoS要求,同时又充分利用了有限的网络资源,使全网的平均阻塞率降低。  相似文献   

15.
Network virtualization can eradicate the ossification of the Internet and stimulate innovation of new network architectures and applications. Optical networks are ideal substrates for provisioning high-bandwidth virtual-network services. In this study, we investigate the problem of network virtualization over both WDM and flexible-grid optical networks by formulating the problems as mixed integer linear programs (MILP). Two heuristics, namely MaxMapping and MinMapping, are developed for each kind of network to solve the problem quickly but suboptimally. Numerical examples show that MinMapping consumes fewer spectrum resources than MaxMapping and performs very close to the optimal results derived by the MILP in both kinds of optical networks, by exploring the opportunities of traffic grooming. Also, it is verified that flexible-grid optical networks can be more spectrum efficient than WDM networks as the substrate for network virtualization.  相似文献   

16.
An important problem in WDM network design is to construct a logical topology and determine an optimal routing over that topology. Mixed Integer Linear Program (MILP) formulations to generate optimal solutions for this problem have been presented. Such formulations are computationally intractable, even for moderate sized networks. A standard approach is to decouple the problem of logical topology design and the problem of routing the traffic on this logical topology. Heuristics for finding the logical topology exist and a straight-forward linear program (LP), based on the node-arc formulation can be used to solve the routing problem over a given logical topology. We have found that such LP formulations become computationally infeasible for large networks. In this paper, we present a new formulation, based on the arc-chain representation, for optimally routing the specified traffic over a given logical topology to minimize the congestion of the network. We have used the revised simplex method incorporating an implicit column generation technique, and exploited the special Generalized Upper Bounding structure as well as the possibility of eta-factorization for efficiently updating the dual variables and finding the solution. Experimental results on a number of networks demonstrate the suitability of this approach.  相似文献   

17.
In optical Wavelength Division Multiplexing (WDM) networks, different protection schemes have been proposed in the literature, namely, dedicated protection and shared protection. Shared protection techniques significantly reduce the required spare capacity by providing the same level of availability as dedicated protection. However, current mission critical applications (which heavily depend on the availability of communication resources) require connection availability in the order of 99.999% or higher, which corresponds to a downtime of almost 5 min a year on the average. Therefore, in order to satisfy a connection serviceavailability requirement defined by the users Service Level Agreement in a cost-effective and resource-efficient way, network operators need a systematic mechanism to evaluate the network availability under multiple failure scenario to ensure that current network configuration can meet the required availability degree; otherwise, a network upgrade is required. Unfortunately, under multiple failure scenario, traditional availability analysis techniques based on reliability block diagrams are not suitable for survivable networks with shared spare capacity. Therefore, a new concept is proposed to facilitate the calculations of network availability. In this paper, we propose an analytical model for evaluating the availability of a WDM network with shared-link connections under multiple link failures. The analytical model is also verified using Monte Carlo simulation. The proposed model significantly contributes to the related areas by providing network operators with a quantitative tool to evaluate the system availability and, thus, the expected survivability degree of WDM optical networks with shared connections under multiple link failures.  相似文献   

18.
As networks grow in size, large-scale failures caused by disasters may lead to huge data loss, especially in an optical network employing wavelength-division multiplexing (WDM). Providing 100 % protection against disasters would require massive and economically unsustainable bandwidth overprovisioning, as disasters are difficult to predict, statistically rare, and may create large-scale failures. Backup reprovisioning schemes are proposed to remedy this problem, but in case of a large-scale disaster, even the flexibility provided by backup reprovisioning may not be enough, given the sudden reduction in available network resource, i.e., resource crunch. To mitigate the adverse effects of resource crunch, an effective resource reallocation is possible by exploiting service heterogeneity, specifically degraded-service tolerance, which makes it possible to provide some level of service, e.g., reduced capacity, to connections that can tolerate degraded service, versus no service at all. Software-Defined Networking (SDN) is a promising approach to perform such dynamic changes (redistribution of network resources) as it simplifies network management via centralized control logic. By exploiting these new opportunities, we propose a Backup Reprovisioning with Partial Protection (BRPP) scheme supporting dedicated-path protection, where backup resources are reserved but not provisioned (as in shared-path protection), such that the amount of bandwidth reserved for backups as well as their routings are subject to dynamic changes, given the network state, to increase utilization. The performance of the proposed scheme is evaluated by means of SDN emulation using Mininet environment and OpenDaylight as the controller.  相似文献   

19.
In this paper, a survivable routing algorithm is proposed for shared segment protection (SSP), called optimal self-healing loop allocation (OSHLA), which dynamically allocates spare capacity for a given working lightpath in mesh wavelength-division-multiplexing (WDM) networks with partial wavelength conversion capability. Two novel graph transformation approaches, namely graph of cycles and wavelength graph of paths, are introduced to solve this problem, in which the task of survivable routing is formulated as a series of shortest path searching processes. In addition to an analysis on the computation complexity, a suite of experiments is conducted to verify OSHLA on four networks with different topologies and traffic loads. We find that the blocking probability and computation complexity are dominated by the upper bound on the length of the working and protection segments. Comparison is made between OSHLA and four other reported schemes in terms of blocking probability. The results show that OSHLA can achieve the lowest blocking probability under the network environment of interest. We conclude that OSHLA provides a generalized framework of survivable routing for an efficient implementation of SSP in mesh WDM partial wavelength convertible networks. With OSHLA, a compromise is initiated by manipulating the upper bound on the length of working and protection segments such that the best performance-computation complexity gain can be achieved.  相似文献   

20.
For improving the resource efficiency of dynamic shared path protection in elastic optical networks, a survivable RSA (SRSA)-based heuristic algorithm is proposed in the paper. In SRSA, an adaptive adjustment link cost function is devised to effectively select working and protection paths. The cost function sufficiently considers available spectrum resources and the length of light paths for both working and protection paths. In order to achieve high resource efficiency, a spectrum allocation strategy named minimal cost stable set is proposed to allocate spectrum for protection paths with respect to the resource efficiency in the link cost function. And the graph coloring algorithm is introduced to select the shared protection path with the highest resource efficiency for the request. Compared with the shared path protection and dynamic load balancing shared path protection, simulation results show that the proposed SRSA decreases bandwidth blocking probability and achieves high resource efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号