首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the bioleaching mechanism and electrochemical studies of metal sulfides, the dissolution rates of chalcocite and pyrite are controlled by redox potentials. Experiment on the bioleaching of chalcocite and pyrite under constant redox potential by sparging with nitrogen gas was demonstrated. By leaching at low and constant redox potential(〈760 mV, vs SHE), copper recoveries of 90 %–98 % are achieved, which are 10 times more than iron recoveries. The iron-oxidizing bacterial populations are observed to continue to reduce under oxygen limitation conditions, but the Acidithiobacillus that have only sulfur-oxidizing capabilities are an attractive alternative for redox-controlled bioleaching of chalcocite.Thus, the described redox control technique might be one of the effective approaches to balance acid and iron in Zijinshan copper bio-heap leaching practice.  相似文献   

2.
This paper elaborated on the sustainability of the copper extraction process. In fact, an alternative copper extraction route from mixed sulphide ores, chalcopyrite and chalcocite using mesophilic biomass consortium at 33.3 °C and ferric leaching process were attempted. Bioleaching experiments were settled with a fraction size of −75+53 µm. Bacteria were used as the catalyst. A copper yield of 65.50% was obtained. On the other hand, in ferric leaching process, with a fraction size of −53+38 µm, when the temperature was increased to 70 °C, the copper leaching rate increased to 78.52%. Thus, comparatively, the mesophilic bioleaching process showed a more obvious advantage in copper extraction than leaching process with a high temperature. However, it has been resolved from the characterization performed using SEM−EDS, FTIR and XRD observations coupled with different thermodynamic approaches that, the indirect mechanism is the main leaching mechanism, with three transitory mechanisms (polysulphide, thiosulphate and elemental sulphur mechanisms) for the mixed chalcopyrite−chalcocite ore. Meanwhile, the speciation turns into Cu2S−CuS−Cu5FeS4−Cu2S before turning into CuSO4. While ferrous oxidation and the formation of ferric sulphate occur, and there is a formation of strong acid as bacteria digest sulphide minerals into copper sulphate at low temperature, which is why this copper production scenario requires a redox potential more than 550 mV at room temperature for high copper leaching rate.  相似文献   

3.
The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM−EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40 °C, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60 °C, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80 °C, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar−quartz−copper−iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar−quartz−copper−iron colloid.  相似文献   

4.
1 INTRODUCTIONChalcopyriteisoneofthemostimportantcopperminerals.Biohydrometallurgyhasgraduallybecomeanimportanttechnologyintreatinglow gradecopperores,especiallywhentheminingindustryhastobefaceduptoincreasinglyseriousproblemssuchastheprogressingexhaust…  相似文献   

5.
The relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic Archaea culture (Acidianus brierleyi, Metallosphaera sedula, Acidianus manzaensis and Sulfolobus metallicus) at 65 °C was studied. Leaching experiments showed that the addition of activated carbon could significantly promote the dissolution of chalcopyrite for both bioleaching and chemical leaching. The results of synchrotron-based X-ray diffraction, iron L-edge and sulfur K-edge X-ray absorption near edge structure spectroscopy indicated that activated carbon could change the transition path of electrons through galvanic interactions to form more readily dissolved secondary mineral chalcocite at a low redox potential (<400 mV) and then enhanced the copper dissolution. Jarosite accumulated immediately in the initial stage of bioleaching with activated carbon but copper dissolution was not hindered. However, much jarosite precipitated on the surface of chalcopyrite in the late stage of bioleaching, which might account for the decrease of copper dissolution rate. More elemental sulfur (S0) was also detected with additional activated carbon but the mixed thermophilic Archaea culture had a great sulfur oxidation activity, thus S0 was eliminated and seemed to have no significant influence on the dissolution of chalcopyrite.  相似文献   

6.
The oxidation of an auriferous pyrite ore sample was evaluated in biological leaching experiments for subsequent gold recovery via cyanidation. In batch cultures, organisms derived from the mine site oxidized pyrite and ferrous iron at pH values as low as pH 0.6. The recovery of gold was variable in shake flask experiments. In stirred tank bioreactor leaching, gold recovery was proportional to the extent of iron dissolution by bioleaching. The leaching of arsenic from the sample was also directly proportional to iron dissolution.  相似文献   

7.
The chemical analysis of a complex sulphide concentrate by emission spectrometry and X-ray diffraction shows that it contains essentially copper, lead, zinc and iron in the form of chalcopyrite, sphalerite and galena. A small amount of pyrite is also present in the ore but does not be detected with X-ray diffraction. The cupric chloride leaching of the sulphide concentrate at various durations and solid/liquid ratios at 100 ℃ shows that the rate of dissolution of the ore is the fastest in the first several hours, and after 12 h it does not evolve significantly. If oxygen is excluded from the aqueous cupric chloride solution during the leaching experiment at 100 ℃, the pyrite in the ore will not be leached. The determination of principal dissolved metals in the leaching liquor by flame atomic absorption spectrometry, and the chemical analysis of solid residues by emission spectrometry and X-ray diffraction allow to conclude that the rate of dissolution of the minerals contained in the complex sulphide concentrate are in the order of galena 〉 sphalerite 〉 chalcopyrite.  相似文献   

8.
采用矿物自动分析仪(MLA)、扫描电镜(SEM)、X射线衍射(XRD)研究了紫金山金铜矿入选矿石中有价元素铜、金、银的赋存状态以及分选过程中的金属走向。结果表明,铜矿物主要有蓝辉铜矿、铜蓝、硫砷铜矿,金银以游离矿物和硫化物包裹体为主。铜矿物常见沿明矾石溶蚀孔洞或碎裂缝隙充填,与黄铁矿密切连生,从原矿中分选铜矿物,理论品位为Cu 69.70%,理论回收率93.55%。中粒金嵌布于铜矿物和黄铁矿矿物粒间或裂隙,可随着铜和硫的回收进入铜、硫精矿,金的理论回收率分别为57.19%和27.27%;微细金粒包裹于明矾石和石英中,随脉石损失于尾矿中。银以显微银为主,多见呈微细粒包裹于硫化矿物中,铜精矿和硫精矿中银的理论回收率分别为56.96%和26.71%。  相似文献   

9.
A cooperative bioleaching (Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans) and single bioleaching (Acidithiobacillus ferriooxidans or Acidithiobacillus thiooxidans) of sphalerite were investigated by X-ray diffractometry, energy dispersive spectrography and scanning electron microscopy. The experimental results show that the leaching rate of zinc in the mixed culture is higher than that in pure culture and the sterile control. In these processes, two kinds of bacteria perform different functions and play a cooperative role during leaching of sphalerite. The bioleaching action carded out by Acidithiobacillus ferriooxidans (.4. ferriooxidans) is not directly performed through Fe^2+ but Fe^3+, and its role is to oxidize Fe^2+ to Fe ^3+ and maintain a high redox potential. Moreover, the addition of an appropriate concentration of ferric iron to the leaching systems is beneficial to zinc dissolution. In the leaching systems without Acidithiobacillus thiooxidans (.A. thiooxidans), elemental sulfur layers are formed on mineral surface during the dissolution of zinc and block continuous leaching. Acidithiobacillus thiooxidans, however, eliminate the passivation and cause the bioleaching process to continue in the leaching systems. At the same time, protons from the bacterial oxidization of the elemental sulfur layers also accelerate the leaching of zinc.  相似文献   

10.
The bioleaching of bornite with mixed moderately thermophilic culture at 50 °C was investigated. The intermediary species formed during the leaching of bornite were characterized by XRD and XPS. In addition, the evolution of Cu-state during leaching of bornite was further studied by applying φh-pH diagram and cyclic voltammetry. The results showed that the bornite was more likely to be leached at high redox potential. Furthermore, the intermediary sulfides, such as isocubanite, covellite, chalcopyrite, disulfide, and polysulfide, were formed in the course of bornite dissolution. The Cu 2p photoelectron spectrum revealed that the valence of copper in bornite and intermediary sulfide formed in the dissolution of bornite is +1. The bornite and chalcopyrite can be converted into each other, and both can be further converted to covellite and/or chalcocite.  相似文献   

11.
草酸根(ox2-)对三价铁具有强的配位能力,可用草酸配位浸出二段焙砂中包裹金的赤铁矿,提高金的回收率。考察了草酸用量、液固比、浸出温度和时间对二段焙砂中铁浸出率的影响。结果表明,用1.17倍理论量的草酸在液固比为12 mL/g时于90℃浸出2 h,铁浸出率达到75.8%以上。除铁渣进一步氰化浸出,渣中金品位为8.8 g/t,低于直接氰化浸出渣12.3 g/t的金品位。草酸浸出液主要成分为具有光催化活性的Fe(ox)+和Fe(ox)2-,可采用光催化法回收铁、再生草酸,再生的草酸可返回浸铁过程。  相似文献   

12.
This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.  相似文献   

13.
生物因素对次生硫化铜矿堆浸过程动力学的影响   总被引:1,自引:0,他引:1  
假定生物浸出过程细菌的作用是间接作用,以实验室柱浸模拟次生硫化铜矿生物堆浸,基于细菌生长Monod方程及收缩核模型建立细菌生长动力学因子影响硫化矿浸出速率的动力学模型,研究铜浸出速率、溶液总铁、溶液中细菌浓度与时间的关系、细菌产出率和细菌饱和系数对浸出速率影响的动力学规律。动力学研究表明,在浸出早期,氧化浸出速率、溶液中总铁浓度以及溶液中的细菌数量增长较快,而在浸出后期则增长较慢。计算与实际结果表明,细菌最大生长比速率、细菌产出率、细菌饱和常数及溶液中Fe离子的浓度均对硫化矿的氧化浸出速率有明显影响,尤其在浸出早期影响较大。应用动力学模型仿真结果与实际基本符合,可分析生物因素对浸出的影响趋势。  相似文献   

14.
Intensifying effects of ferrous sulfate and pyrite on bioleaching of low-grade molybdenite concentrate were studied in this paper. The experimental results show that the oxidation dissolution of molybdenite can be accelerated with the addition of either ferrous sulfate or pyrite in bioleaching medium. Pyrite has better enhancing effect than ferrous sulfate, and the highest molybdenum leaching rate in pyrite-added solutions is 20.85%, increasing by 12.64% compared with that in 9K leaching system. Molybdenum leaching rate does not increase linearly with the increase of the addition of either ferrous sulfate or pyrite in each type solution. Great amounts of [NH4Fe3(SO4)2(OH)6] and[KFe3(SO4)2(OH)6] with different morphologies will be deposited on molybdenite ores when the additions of Fe from ferrous sulfate or pyrite exceed that from 9K leaching system by 0.5 times, and these deposits hinder the oxidation dissolution of molybdenite to some extent.  相似文献   

15.
Pyrite oxidation rates were examined under various conditions in the presence of A.ferrooxidans and L.ferriphilum,in which different pulp concentration,inoculation amount,external addition of Fe3+ and initial pH value were performed.It is found that A.ferrooxidans and L.ferriphilum show similar behaviors in the bioleaching process.The increasing pulp concentration decreases the leaching rate of iron,and external addition of high concentration Fe3+ is also adverse to leaching pyrite.The increased inoculation amount and high initial pH value are beneficial to leaching pyrite,and these changed conditions bring more obvious effects on leaching pyrite by L.ferriphilum than by A.ferrooxidans.The results also show that adjusting the pH values in leaching process baffles leaching pyrite due to the formed jarosite.Jarosite formed in leaching process was observed using XRD,SEM and energy spectrum analysis,and a considerable amount of debris with a crystalline morphology is present on the surface of pyrite.The results imply that the indirect action is more important for bioleaching pyrite.  相似文献   

16.
A high temperature-tolerating thermoacidophilic archae (TA) was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province, China, and was used in bioleaching experiments of a low-grade chalcopyrite ore. The TA grow at temperatures ranging from 40 to 80℃, with 65℃ being the optimum temperature, and at pH values of 1.5 to 4.0, with an optimum pH value of 2.0. The bioleaching experiments of the chalcopyrite ore were conducted in both laboratory batch bioreactors and leaching columns. The results obtained from the bioreactor experiments showed that the TA bioleaching rate of copper reached 97% for a 12-day leaching period, while the bioleaching rate was 32.43% for thiobacillus ferrooxidans (Tf) leaching for the same leaching time. In the case of column leaching, tests of a two-phase leaching (196 days), that is,a two-month (56 days) Tf leaching in the first phase, followed by a 140-day TA leaching in the second phase were performed. The average leaching rate of copper achieved for the 140-day TA leaching was 195mg/(L· d), while for the control experiments, it was as low as 78mg/(L· d) for the Tf leaching, indicating that the TA possesses a more powerful oxidizing ability to the chalcopyrite than Tf. Therefore, it is suggested that the two-phase leaching process be applied to for the heap leaching operations, whereas, the TA can be used in the second phase when the temperature inside the heap has increased, and the primary copper sulfide minerals have already been partially oxidized with Tf beforehand in the first phase.  相似文献   

17.
A high temperature-tolerating thermoacidophilic archae (TA) was isolated from water samples collected from a hot sulfur-containing spring in the Yunnan Province, China, and was used in bioleaching experiments of a low-grade chalcopyrite ore. The TA grow at temperatures ranging from 40 to 80℃, with 65℃ being the optimum temperature, and at pH values of l.5 to 4.0, with an optimum pH value of 2.0. The bioleaching experiments of the chalcvpyrite ore were conducted in both laboratory batch bioreactors and leaching columns. The results obtained from the bioreactor experiments showed that the TA bioleaching rate of copper reached 97% for a 12-day leaching period, while the bioleaching rate was 32.43% for thiobacillus ferrooxidans (Tf) leaching for the same leaching time. In the case of column leaching, tests of a two-phase leaching (196 days), that is, a two-month (56 days) Tf leaching in the first phase, followed by a 140-day TA leaching in the second phase were performed. The average leaching rate of copper achieved for the 140-day TA leaching was 195mg/(L.d), while for the control experiments, it was as low as 78mg/(L .d) for the Tf leaching, indicating that the TA possesses a more powerful oxidizing ability to the chalcopyrite than Tf Therefore, it is suggested that the two-phase leaching process be applied to .for the heap leaching operations, whereas, the TA can be used in the second phase when the temperature inside the heap has increased, and the primary copper sulfide minerals have already been partially oxidized with Tf beforehand in the first phase.  相似文献   

18.
To Ray Mines div. of Kennecott Copper Corp., LPF means the recovery of 2 lb of copper per ton of mill feed. Non-sulfide copper minerals are treated by leaching with sulfuric acid and precipitation by sponge iron produced from pyrite concentrate. This article outlines the process with particular emphasis on the sponge-iron plant, shown in the photo below.  相似文献   

19.
In order to investigate the contributions of contact and non-contact cells of Acidianus manzaensis(A.manzaensis) YN25 to the bioleaching of chalcopyrite,three experiments were carried out in the modified shake flasks.The redox potential,pH,cell density,copper and iron ions in the solution were monitored,and the morphological feature and chemical composition of the leached residues were analyzed.The highest leaching efficiency of Cu and Fe was reached in the experiment where the A.manzaensis YN25 could contact the surface of the chalcopyrite.There was no precipitation of jarosite in the leached residues of three experiments,but there was elemental sulfur in the leached residues when the cells could not contact the chalcopyrite.From these results,it is apparent that the leaching of the chalcopyrite is the cooperative action of the contact and non-contact A.manzaensis YN25.  相似文献   

20.
Bioleaching of chalcopyrite by pure and mixed culture   总被引:4,自引:0,他引:4  
The bioleaching of chalcopyrite in shake flasks was investigated by using pure Acidithiobacillusferrooxidans and mixed culture isolated from the acid mine drainage in Yushui and Dabaoshan Copper Mine in China, marked as YS and DB, respectively. The mixed culture consisted mainly of Acidithiobacillus fOrrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum spp. (Leptospirillum ferriphilum and Leptospirillum ferrooxians). The results show that the mixed culture is more efficient than the pure Acidithiobacillus ferrooxidans because of the presence of the sulfur-oxidizing cultures that positively increase the dissolution rate and the recovery of copper from chalcopyrite. The pH value decreases with the decrease of chalcopyrite leaching rate, because of the formation ofjarosite as a passivation layer on the mineral surface during bioleaching. In the bioleaching using the mixed culture, low pH is got from the sulfur oxidizing inhibiting, the formation ofjarosite. The copper extraction reaches 46.27% in mixed culture and 30.37% in pure Acidithiobacillusferrooxidans after leaching for 75 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号