首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

Monitoring the earth’s biosphere is an essential task to understand the global dynamics of ecosystems, biodiversity, and management aspects. Forests, as a natural resource, have an important role to control the climate changes and the carbon cycle. For this reason, biomass and consequently forest height are known as the key information for monitoring the forest and its underlying surface. Several studies have shown that Synthetic Aperture Radar (SAR) imaging systems can provide an appropriate solution to estimate the biomass and the forest height. In this framework, Polarimetric SAR Interferometry (PolInSAR) technique is an effective tool for forest height estimation, due to its sensitivity to location and vertical distribution of the forest structural components. From one point of view, the employed methods are either based on model-based decomposition techniques or inversion models. In this paper, a method based on the combination of two categories has been proposed. Indeed, introducing a new way of combining the two categories for forest height estimation is the novel contribution of this study. The main motivation is to find directly and simultaneity the volume only and ground only complex coherences using the PolInSAR decomposition technique without the need to any a priori information for improving the forest height estimation procedure in the inversion models such as Random Volume over Ground (RVoG) model. The efficiency of the proposed approach was demonstrated by the E-SAR L-band single baseline PolInSAR data over the Remningstorp test site, in southern Sweden. Moreover, Light Detection and Ranging (LiDAR) data were used to evaluate the results. The experimental results showed that the proposed method improved the forest height estimation by 6.86 m.  相似文献   

2.
合成孔径雷达森林树高和地上生物量估测研究进展   总被引:1,自引:0,他引:1  
微波遥感具有一定的穿透性,能够与森林内部的散射体发生相互作用,从而获得指示森林垂直方向的参数,被认为在森林垂直结构参数估测方面具有很大的潜力。PolSAR、InSAR、PolInSAR、多基线InSAR以及多基线PolInSAR技术的发展进一步拓展了微波遥感在林业中的应用,为森林垂直结构参数估测提供了可行的解决方案。首先总结了森林垂直结构剖面的层析提取方法;然后重点阐述了林下地形、森林树高以及森林地上生物量的微波遥感估测方法;最后就森林垂直结构参数估测研究中存在的问题及其发展趋势进行了分析。
  相似文献   

3.
Forest height estimation is one of the hottest research areas of InSAR/PolInSAR technology within its 30 years’ development.Estimation algorithms play an important role in the forest height assessment by InSAR/PolInSAR technologies.This paper systematically reviewed the basic theories,model assumptions and then summarized the limitation and potential of these algorithms applied in forest height estimation,especially performed in regional or global scale.It also deliberated the intrinsic characteristics of these algorithms like DEM difference method,three\|stage inversion process,coherence amplitude method and so on.Analysis showed that the estimation results of DEM difference method had higher accuracy and less influence from forest types and structure.So it had great potential for global and regional forest height assessment,however,it was limited by the requirement of high accuracy DEM data in those area.The result accuracy of algorithms based on PolInSAR depended more on forest types,structures and also the robust of forest scattering models.It had no restriction of DEM and could perform in global and regional scale,but for the forest area with great heterogeneous,model and algorithm suitability and robust need to further studying.Besides,for the poor penetration of single\|baseline InSAR/PolInSAR,we should focus more on multi\|dimension,multi\|baseline technique for InSAR/PolInSAR application development in the future.  相似文献   

4.
Forest canopy height is a critical parameter in better quantifying the terrestrial carbon cycle. It can be used to estimate aboveground biomass and carbon pools stored in the vegetation, and predict timber yield for forest management. Polarimetric SAR interferometry (PolInSAR) uses polarimetric separation of scattering phase centers derived from interferometry to estimate canopy height. A limitation of PolInSAR is that it relies on sufficient scattering phase center separation at each pixel to be able to derive accurate forest canopy height estimates. The effect of wavelength-dependent penetration depth into the canopy is known to be strong, and could potentially lead to a better height separation than relying on polarization combinations at one wavelength alone. Here we present a new method for canopy height mapping using dual-wavelength SAR interferometry (InSAR) at X- and L-band. The method is based on the scattering phase center separation at different wavelengths. It involves the generation of a smoothed interpolated terrain elevation model underneath the forest canopy from repeat-pass L-band InSAR data. The terrain model is then used to remove the terrain component from the single-pass X-band interferometric surface height to estimate forest canopy height. The ability of L-band to map terrain height under vegetation relies on sufficient spatial heterogeneity of the density of scattering elements that scatter L-band electromagnetic waves within each resolution cell. The method is demonstrated with airborne X-band VV polarized single-pass and L-band HH polarized repeat-pass SAR interferometry using data acquired by the E-SAR sensor over Monks Wood National Nature Reserve, UK. This is one of the first radar studies of a semi-natural deciduous woodland that exhibits considerable spatial heterogeneity of vegetation type and density. The canopy height model is validated using airborne imaging LIDAR data acquired by the Environment Agency. The rmse of the LIDAR canopy height estimates compared to theodolite data is 2.15 m (relative error 17.6%). The rmse of the dual-wavelength InSAR-derived canopy height model compared to LIDAR is 3.49 m (relative error 28.5%). From the canopy height maps carbon pools are estimated using allometric equations. The results are compared to a field survey of carbon pools and rmse values are presented. The dual-wavelength InSAR method could potentially be delivered from a spaceborne constellation similar to the TerraSAR system.  相似文献   

5.
This paper highlights the potential of multiwaveband polarimetric SAR data for the estimation of both canopy (percentage canopy closure) and sub-canopy (stem biomass) biophysical variables of a Sitka spruce forest in upland Wales. Stand stem biomass was estimated using forest survey data on diameter at breast height (DBH) and tree height from 0.01 ha plots. Photographs of the forest canopy were taken using a camera fitted with a wide-angle fisheye lens from a number of locations within a stand. The photographs were later digitized and estimates of stand percentage canopy closure were derived using image processing software. It was found that C-band HV and VV, and L-band HV and VV polarization backscatter were significantly related to stem biomass. There was no sensitivity to percentage canopy closure using single polarization backscatter but highly significant relationships were obtained using ratios of single polarization backscatter and variables derived from the polarization signatures. The strong correlations between C-band backscatter and stem biomass indicated a relationship between the structure of the top crown layer and sub-canopy biomass.  相似文献   

6.
短波长的干涉合成孔径雷达(InSAR)适用于数字表面模型(DSM)提取,但难以提取准确的林下地相位,在缺乏高精度数字高程模型(DEM)的森林区域,短波长InSAR数据估测树高的能力受到限制。针对这一问题,采用机载X-波段单极化(HH)双天线InSAR数据开展了森林树高估测方法研究。双天线InSAR可以忽略时间去相干的影响,并且X-波段波长较短,入射角较大(中心入射角45.77°),地表对干涉去相干的贡献可以忽略,因此可将干涉复相干作为体去相干,对体去相干模型中的结构函数进行勒让德展开,截取第0阶展开式得到了基于相干幅度的森林树高估测模型,利用均匀选取的LiDAR冠层高度模型(CHM)检验样本对估测结果进行严格的精度评价,并与差分法的树高估测结果进行对比。精度评价结果显示:相干幅度法与差分法都得到了较高的估测精度,两者的R~2、RMSE、总精度分别为0.81、0.86;1.20m、0.97m;86.4%、88.7%。研究结果表明:相干幅度与森林树高具有负相关关系,适用于估测树高,基于单极化相干幅度的估测模型也可以得到较高的估测精度,与差分法的估测结果相比,虽然估测精度略有降低,但此方法具有两方面的优势:一方面,估测结果不需要实测样地数据标定,对于没有实测样地数据的森林区域亦能进行高精度的树高估测;另一方面,相干幅度法不需要高精度的DEM,具有更强的实用性。  相似文献   

7.
Most terrestrial carbon is stored in forest biomass, which plays an important role in local, regional, and global climate change. Monitoring of forests and their status, and accurate estimation of forest biomass are important in mitigating the impacts of climate change. Empirical models developed using remote-sensing and field-measured forest data are commonly used to estimate forest biomass. In the present study, we used a mechanistic model to estimate height and biomass in the Three Gorges reservoir region (China) based on the allometric scale and resource limits (ASRL) model. The forests in the Three Gorges reservoir region are important and unique in view of the vertical distribution of vegetation and mixed needleleaf. Detailed information about the forest in this region is available from the Geoscience Laser Altimeter System (GLAS) and field measurements from 714 forest plots. The ASRL model parameters were adjusted using GLAS-derived forest tree height to reduce the deviation between modelled and observed forest height. The predicted maximum forest tree height from the optimized ASRL model was compared to measured tree heights, and a good correlation (R2 = 0.566) was found. The allometric scale function between forest height and diameter at breast height (DBH) is developed and the maximum forest tree height from the optimized ASRL model transferred to DBH. Moreover, the forest biomass was estimated from DBH according to the allometric scale function that was determined using DBH and biomass data. The results of maximum forest biomass using the ASRL model and the allometric scale function show a good accuracy (R2 = 0.887) in the Three Gorges reservoir region. Here, we present the forest biomass estimation approach following allometric theory for accurate estimation of maximum forest tree height and biomass. The proposed approach can be applied to forest species in all types of environmental conditions.  相似文献   

8.
In this article, a novel method is proposed for three-dimensional (3D) canopy surface reconstruction of trees using a region-based level set method. Both individual tree crowns and clusters of trees are first marked for further exploration. Multiple horizontal slices corresponding to different heights are obtained. The 3D structure of tree canopy is built using raw data from lidar point clouds. Also, new applications are proposed based on the new method for 3D forest reconstruction. The biomass parameters of the forest, including tree intersection area, tree equivalent crown radius, and canopy volume, can be calculated from stacking 2D slices of trees. Tree types are also identified and classified. The results indicate that this approach is effective for 3D surface reconstruction of forests including individual trees and clusters of trees, and that critical forest parameters (such as tree intersection area, tree position, and canopy volume) can be derived for the evaluation and measurement of biophysical parameters of forests.  相似文献   

9.
为了实现林木固碳释氧量的数字化估算,针对现有估算方法的不足,提出了基于BP神经网络的林木固碳释氧量的预测模型。基于对神经网络理论和固碳释氧量估算模型的研究,分析了林木在生长季节的CO2通量变化趋势,采用规范化方法对训练样本预处理,进行BP神经网络训练,并结合弛豫涡旋积累法和箱式法,建立了CO2通量神经网络模型。实验结果表明,所建模型具有较好的泛化性能,能够比较准确地估算出林木的固碳释氧量。  相似文献   

10.
In view of the low accuracy of Tree Height(TH) and Diameter at Breast Height(DBH) estimation,as well as the difficulty of individual tree modeling in dense forest,a method to extract forest structure parameters(TH and DBH) and reconstruct a Three-Dimensional(3D) model of forest in subtropical environment based on TLS point cloud data is proposed.The first step is to apply a multi-scale method to extract the ground points for the generation of Digital Elevation Model(DEM).Secondly,using similarity of principal direction between neighboring points and distribution density of points,trunk and other plant organs are separated.Next the trunk points are processed to automatically estimate the tree position and DBH by iterative least squares cylinder fitting;the tree height is automatically estimated by using the octree segmentation.Finally,by combining with the technology of individual tree modeling,a plot-scale 3D forest scene has been reconstructed by planting individual tree model on the terrain model iteratively.The results showed that the correlation coefficient of DBH is R2=0.996,and the average relative error was 2.09%,RMSE was 0.66 cm;the correlation coefficient of tree height is R2=0.972,and the average relative error was 2.16% with RMSE of 0.92 m.The plot-scale reconstructed 3D model of the forest can express the true shape of forest.  相似文献   

11.
A comprehensive canopy characterization of forests is derived from the combined remote sensing signal of imaging spectrometry and large footprint LIDAR. The inversion of two linked physically based Radiative Transfer Models (RTM) provided the platform for synergistically exploiting the specific and independent information dimensions obtained by the two earth observation systems. Due to its measurement principle, LIght Detection And Ranging (LIDAR) is particularly suited to assess the horizontal and vertical canopy structure of forests, while the spectral measurements of imaging spectrometry are specifically rich on information for biophysical and -chemical canopy properties. In the presented approach, the specific information content inherent to the observations of the respective sensor was not only able to complement the canopy characterization, but also helped to solve the ill-posed problem of the RTM inversion. The theoretical feasibility of the proposed earth observation concept has been tested on a synthetic data set generated by a forest growth model for a wide range of forest stands. Robust estimates on forest canopy characteristics were achieved, ranging from maximal tree height, fractional cover (fcover), Leaf Area Index (LAI) to the foliage chlorophyll and water content. The introduction of prior information on the canopy structure derived from large footprint LIDAR observations significantly improved the retrieval performance relative to estimates based solely on spectral information.  相似文献   

12.
In this paper, we describe our polarimetric interferometric synthetic aperture radar (PolInSAR) experiments with high-resolution X-band data acquired by a multi-mode airborne SAR system over an area of Linshui in southern China. First, we introduce our latest multi-mode X-band airborne imaging radar system (Multi-Mode-XSAR), which integrates three operation modes of bistatic, ping-pong, and mixed. Then, the Multi-Mode-XSAR data set and the corresponding ground measurements in test areas are briefly described. Considering the characteristics of the Multi-Mode-XSAR imagery, a dual-baseline polarimetric interferometry (DPI) method is proposed in this article. The proposed method guarantees a high coherence on the full polarimetric data and combines the benefits of short and long baselines to facilitate the phase unwrapping and promote height sensitivity. Our PolInSAR experiment results demonstrate that the DPI method is capable of generating DSM with higher accuracy than other multi-baseline (MB) methods and the Multi-Mode-XSAR imagery has great potential in PolInSAR applications.  相似文献   

13.
本文提出一种基于UD(upper-diagonal)分解与偏差补偿结合的辨识方法,用于变量带误差(errors-in-variables,EIV)模型辨识.考虑单输入单输出(single input and single output,SISO)线性动态系统,当输入和输出含有零均值、方差未知的高斯测量白噪声时,该类系统的模型参数估计是一种典型的EIV模型辨识问题.为了获得这种EIV模型参数的无偏估计,本文先推导出最小二乘模型参数估计偏差量与输入输出噪声方差以及最小二乘损失函数与输入输出噪声方差的关系,然后采用UD分解方法递推获得模型参数估计值,再利用输入输出噪声方差估计值补偿模型参数估计偏差,以此获得模型参数的无偏估计.本文还讨论了算法实现过程中遇到的一些问题及修补方法,并通过仿真例验证了所提辨识方法的有效性.  相似文献   

14.
Laser scanners of small footprint diameter and high sampling density provide possibility to obtain accurate height information on the forest canopy. When applying tree crown segmentation methods, individual single trees can be recognised and tree height as well as crown area can be detected. Detection of suppressed trees from a height model based on laser scanning is difficult; however, it is possible to predict these trees by using theoretical distribution functions. In this study, two different methods are used to predict small trees. In the first method, the parameter prediction method is utilised with the complete Weibull distribution, the parameters of which are predicted with separate parameter prediction models; thus, small trees are determined from the predicted tree height distribution. In the second method, the two-parameter left-truncated Weibull distribution is fitted to the detected tree height distribution.The results are presented by using timber volume and stem density as predicted stand characteristics. The results showed that the root mean square error (RMSE) for the timber volume is about 25% when using only information obtained from laser scanning, whereas the RMSE for the number of stems per ha is about 75%. Predictions for both characteristics are also highly biased and the underestimates are 24% and 62%, respectively. The use of the parameter prediction method to describe small trees improved the accuracy considerably; the RMSE figures for estimates of timber volume and number of stems are 16.0% and 49.2%, respectively. The bias for the estimates is also decreased to 6.3% for timber volume and 8.2% for the number of stems. When a left-truncated height distribution is used to predict the heights of the missing small trees, the RMSEs for the estimates of timber volume and number of stems are 22.5% and 72.7%, respectively. In the case of the timber volume, the reliability figures for both the original laser scanning-based estimates and for the estimates that also contain small trees are comparable to those obtained by conventional compartment-wise Finnish field inventories.  相似文献   

15.
Mean stand height is an important parameter for forest volume and biomass estimation in support of monitoring and management activities. Information on mean stand height is typically obtained through the manual interpretation of aerial photography, often supplemented by the collection of field calibration data. In remote areas where forest management practices may not be spatially exhaustive or where it is difficult to acquire aerial photography, alternate approaches for estimating stand height are required. One approach is to use very high spatial resolution (VHSR) satellite imagery (pixels sided less than 1 m) as a surrogate for air photos. In this research we demonstrate an approach for modelling mean stand height at four sites in the Yukon Territory, Canada, from QuickBird panchromatic imagery. An object-based approach was used to generate homogenous segments from the imagery (analogous to manually delineated forest stands) and an algorithm was used to automatically delineate individual tree crowns within the segments. A regression tree was used to predict mean stand height from stand-level metrics generated from the image grey-levels and within-stand objects relating individual tree crown characteristics. Heights were manually interpreted from the QuickBird imagery and divided into separate sets of calibration and validation data. The effects of calibration data set size and the input metrics used on the regression tree results were also assessed. The approach resulted in a model with a significant R2 of 0.53 and an RMSE of 2.84 m. In addition, 84.6% of the stand height estimates were within the acceptable error for photo interpreted heights, as specified by the forest inventory standards of British Columbia. Furthermore, residual errors from the model were smallest for the stands that had larger mean heights (i.e., > 20 m), which aids in reducing error in subsequent estimates of biomass or volume (since stands with larger trees contribute more to overall estimates of volume or biomass). Estimated and manually interpreted heights were reclassified into 5-metre height classes (a schema frequently used for forest analysis and modelling applications) and compared; classes corresponded in 54% of stands assessed, and all stands had an estimated height class that was within ± 1 class of their actual class. This study demonstrates the capacity of VHSR panchromatic imagery (in this case QuickBird) for generating useful estimates of mean stand heights in unmonitored, remote, or inaccessible forest areas.  相似文献   

16.
林分平均高度是生态系统模型重要的输入参数之一,与生物量估算与碳循环研究高度相关。通过系统回顾林分平均高度研究的发展历史和最新进展,总结了不同传感器林分平均高度(SAR树高与LiDAR冠层高度)研究的主要模型和方法,通过单一传感器技术进行林分平均高度研究的内在特征的不同,分析了多传感器的区域林分平均高度联合反演方法的优劣性,并从科学发展趋势和社会需求出发,认识目前存在的主要问题与难点及未来面临的挑战和机遇,为今后更好地进行森林垂直结构和全球碳循环研究提供思路和借鉴。  相似文献   

17.
Since the launch of sensors with angular observation capabilities, such as CHRIS and MISR, the additional potential of multi-angular observations for vegetation structural and biochemical variables has been widely recognised. Various methods have been successfully implemented to estimate forest biochemical and biophysical variables from atmospherically-corrected multi-angular data, but the use of physically based radiative transfer (RT) models is still limited. Because both canopy and atmosphere have an anisotropic behaviour, it is important to understand the multi-angular signal measured by the sensor at the top of the atmosphere (TOA). Coupled canopy-atmosphere RT models allow linking surface variables directly to the TOA radiance measured by the sensor and are therefore very interesting tools to use for estimating forest variables from multi-angular data.We investigated the potential of TOA multi-angular radiance data for estimating forest variables by inverting a coupled canopy-atmosphere physical RT model. The case study focussed on three Norway spruce stands located at the Bily Kriz experimental site (Czech Republic), for which multi-angular CHRIS and field data were acquired in September 2006. The soil-leaf-canopy RT model SLC and the atmospheric model MODTRAN4 were coupled using a method allowing to make full use of the four canopy angular reflectance components provided by SLC. The TOA radiance simulations were in good agreement with the spectral and angular signatures measured by CHRIS. Singular value decompositions of the Jacobian matrices showed that the dimensionality of the variable estimation problem increased from 3 to 6 when increasing the number of observation angles from 1 to 4. The model inversion was conducted for two cases: 4 and 7 variables. The most influential parameters were chosen as free variables in the look-up tables, namely: vertical crown cover (Cv), fraction of bark material (fB), needle chlorophyll content (needleCab), needle dry matter content (needleCdm) for the 4-variable case, and additionally, tree shape factor (Zeta), dissociation factor (D), and needle brown pigments content (needleCs) in the 7-variable case. All angular combinations were tested, and the best estimates were obtained with combinations using two or three angles, depending on the number of variables and on the stand used. Overall, this case study showed that, although making use of its full potential is still a challenge, TOA multi-angular radiance data do have a higher potential for variable estimation than mono-angular data.  相似文献   

18.
基于KNN方法的森林蓄积量遥感估计和反演概述   总被引:2,自引:0,他引:2       下载免费PDF全文
K-邻近距离法(KNN)作为一种非参数方法,多适用于非正态分布和密度函数未知的遥感数据分类和参数估计,已被广泛地用于寒带和亚寒带地区的多源林业调查和森林蓄积量估计反演。从KNN方法的基本原理出发,在与传统蓄积量遥感估计方法进行对比的基础上,详细地介绍了KNN方法的特点以及与K\|mean方法的区别,总结了KNN法森林蓄积量估计误差的评价模型和度量参数。还对KNN法森林蓄积量遥感估计的国内外研究动态进行了总结,表明了多源信息在KNN法森林蓄积量遥感估计中的重要性,总结出KNN方法进行森林蓄积量遥感估计的两种方法:基于样地点级和基于林分级。最后详细阐述了影响KNN法森林蓄积量估计的众多因素,提出了在低纬度地区利用KNN法对森林蓄积量遥感估计和反演进行系统研究的建议。  相似文献   

19.
基于目标出生强度在线估计的多目标跟踪算法   总被引:1,自引:0,他引:1  
针对多目标跟踪中未知的目标出生强度, 提出了基于Dirichlet分布的目标出生强度在线估计算法, 来改进概率假设密度滤波器在多目标跟踪中的性能. 算法采用有限混合模型来描述未知目标出生强度, 使用仅依赖于混合权重的负指数Dirichlet分布作为混合模型参数的先验分布. 利用拉格朗日乘子法推导了混合权重在极大后验意义下的在线估计公式; 混合权重在线估计过程利用了负指数Dirichlet分布的不稳定性, 驱使与目标出生数据不相关分量的消亡. 以随机近似过程为分量均值和方差的在线估计策略, 推导了基于缺失数据的分量均值与方差的在线估计公式. 在无法获得初始步出生目标先验分布的约束下, 提出了在混合模型上增加均匀分量的初始化方法. 以当前时刻的多目标状态估计值为出发点, 提出了利用概率假设密度滤波器消弱杂波影响的出生目标数据获取方法. 仿真结果表明, 提出的目标出生强度在线估计算法改进了概率假设密度滤波器在多目标跟踪中的性能.  相似文献   

20.
This article explores a non-linear partial least square (NLPLS) regression method for bamboo forest carbon stock estimation based on Landsat Thematic Mapper (TM) data. Two schemes, leave-one-out (LOO) cross validation (scheme 1) and split sample validation (scheme 2), are used to build models. For each scheme, the NLPLS model is compared to a linear partial least square (LPLS) regression model and multivariant linear model based on ordinary least square (LOLS). This research indicates that an optimized NLPLS regression mode can substantially improve the estimation accuracy of Moso bamboo (Phyllostachys heterocycla var. pubescens) carbon stock, and it provides a new method for estimating biophysical variables by using remotely sensed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号