首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

Active and passive remote sensing techniques for measurement of oceanic constituents have been compared using the ADRIA'84 dataset. A new method has been developed to retrieve the amount of nonchlorophyllous particles by airborne lidar measurements at three wavelengths. If the lidar measurements of chlorophyll-a and Gelbstoff are calibrated by in situ measurements, the fluorescence efficiencies can be estimated, Specific extinction coefficients for chlorophyll-a and nonchlorophyllous particles for the northern Adriatic Sea have been derived by comparing in situ and underwater irradiance measurements with radiative transfer calculations, using the ocean-atmosphere model by Fischer (1983). For the Coastal Zone Colour Scanner (CZCS), an algorithm for chlorophyll-a measurements was derived. The comparison with chlorophyll-a lidar measurements shows that different scales are resolved by both instruments. The CZCS-chlorophyll-a concentrations are influenced by Gelbstoff and nonchlorophyllous particles. It is possible to use airborne lidar measurements of chlorophyll-a for calibrating spaceborne radiometers, if the fluorescence efficiency of chlorophyll-a is known and if the lidar itself is calibrated. The comparison between Advanced Very High Resolution Radiometer (AVHRR) sea surface temperatures and CZCS measurements indicates that mesoscale structures in the ocean are much better indicated by measurements in the visible spectrum. Mesoscale structures are often masked by the warming of the ocean top layer when measuring in the infrared.  相似文献   

2.
Variations of bio-optical properties at oceanographic sampling stations, although important for satellite data validation and algorithm development, have rarely been documented or studied. Using flow-through data and water samples collected from the flow-through system and Niskin bottles at ~260 stations between summer 1998 and spring 1999 in the north-east Gulf of Mexico (27.5° to 30.4°?N, 90° to 80°?W), we study the variability of several properties, including chlorophyll-a concentration and Gelbstoff absorption, at the sampling stations. It is found that the standard deviations for both Gelbstoff and chlorophyll are less than 10% of the mean values for more than 90% of the stations, including the coastal stations where water is turbid or Case II. High variations are found in the frontal regions near river plumes. At several stations chlorophyll-a and Gelbstoff vary by nearly two-fold due to spatial and/or temporal variations of the properties near the plume waters. This suggests that for water samples collected from moderately coloured waters (chlorophyll-a >0.25?mg?m?3) or coastal river plume waters, special care should be taken to validate the sample data by using multiple samples, a continuous flow-through system, or a concurrent satellite data product map. Otherwise large uncertainties are likely to occur when these data are used to validate satellite estimates.  相似文献   

3.
The utility of three different algorithms for retrieving surface chlorophyll-a values from satellite images of MODIS-Aqua is tested in the northern Alboran Sea. The available global algorithm to calculate chlorophyll-a from reflectance of MODIS-Aqua (OC3M) overestimates the surface chlorophyll-a in the study area. Another regional algorithm specifically developed for the Mediterranean Sea (MedOC3) improves the estimates although the best outcome is obtained with OC5, which was developed for Atlantic coastal waters. The three tested algorithms perform worse at in situ chlorophyll-a concentrations higher than 1 mg m?3 and exhibit uncertainty levels higher than 35% for this range of concentrations. A new algorithm (ALBOC3) is proposed which produces a good estimation of the in situ chlorophyll-a for the whole range of concentrations normally registered in the study area (0.1–3.5 mg m?3). We hypothesize that the particular bio-optical features of the northern Alboran Sea phytoplankton explain the poor functioning of the published algorithms that have been tested in this work.  相似文献   

4.
Restoration of the ecosystem services and functions of lakes requires an understanding of the turbidity dynamics in order to arrive at informed environmental management decisions. The understanding of the spatio-temporal dynamics of turbidity requires frequent monitoring of the turbidity components such as chlorophyll-a concentration. In this study, we explored the use of Moderate Resolution Imaging Spectroradiometer Aqua (MODIS-Aqua) satellite data in studying the spatio-temporal changes in chlorophyll-a concentration in Lake Naivasha, a turbid tropical system. The temporal trend of chlorophyll-a concentration over the study period in the lake was also evaluated. The temporal trend assessment was achieved through the removal of periodic seasonal interference using Seasonal-Trend decomposition based on the LOESS (Local Regression) procedure. The resultant chlorophyll-a concentration maps derived from MODIS-Aqua satellite data give an indication of the monthly spatial variation in chlorophyll-a concentration from 2002 to 2012. The results of regression analyses between satellite-derived chlorophyll-a and in situ measurements reveal a high level of precision, but with a measureable bias with the satellite underestimating actual in situ measurements (R2 = 0.65, P < 0.001). Although the actual values of the chlorophyll-a concentrations are underestimated, the significant relationship between satellite-derived chlorophyll-a and in situ measurements provides reliable information for studying spatial variations and temporal trends. In 2009 and 2010, it was difficult to detect chlorophyll-a from the MODIS-Aqua imagery, and this coincided with a period of the lowest water levels in Lake Naivasha. An inverse relationship between de-seasoned water level and chlorophyll-a concentration was evident. This study shows that MODIS-Aqua satellite data provide useful information on the spatio-temporal variations in Lake Naivasha, which is useful in establishing general trends that are more difficult to determine through routine ground measurements.  相似文献   

5.
Few studies have focused on the use of ocean colour remote sensors in the Gulf of Gabes (southeastern Tunisia). This work is the first study to evaluate the ocean colour chlorophyll-a product in this area. Chlorophyll-a concentrations were measured during oceanographic cruises performed off the Gulf of Gabes. These measurements were used to validate satellite data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. First, two atmospheric correction procedures (standard and shortwave infrared) were tested to derive the remote-sensing reflectance, and then a comparison between two bio-optical (OC3M and MedOC3) algorithms were realized using the in situ measurements. Both atmospheric correction procedures gave similar results when applied to our study area indicating that most pixels were non-turbid. The comparison between bio-optical algorithms shows that using the regional bio-optical algorithm MedOC3 improves chlorophyll-a estimation in the Gulf of Gabes for the low values of this parameter.  相似文献   

6.
The empirical approach of remote sensing has a proven capability to provide timely and accurate information on inland and near-coastal transitional waters. This article gives a thorough review of empirical algorithms for quantitatively estimating a variety of parameters from space-borne, airborne and in situ remote sensors in inland and transitional waters, including chlorophyll-a, total suspended solids, Secchi disk depth (z SD), turbidity, absorption by coloured dissolved organic matter (a CDOM) and other parameters, for example, phycocyanin. Current remote-sensing instruments are also reviewed. The theoretical basis of the empirical algorithms is given using fundamental bio-optical theory of the inherent optical properties (IOPs). Bands, band ratios and band arithmetic algorithms that could be used to produce common biogeophysical products for inland/transitional waters are identified. The article discusses the potential role that empirical algorithms could play alongside more advanced model-based algorithms in the future of water remote sensing, especially for near real-time operational monitoring systems. The article aims to describe the current status of empirical remote sensing in inland and near-coastal transitional waters and provide a useful reference to workers. It does not cover ‘inversion’ algorithms.  相似文献   

7.
Changes in chlorophyll concentration distribution in surface waters of the northeastern Gulf of Mexico (NEGOM) were examined using satellite and in situ data collected between November 1997 and August 2000. The patterns of chlorophyll distribution derived from in situ data consistently matched the satellite observations, even though the satellite-derived concentrations in coastal and offshore waters influenced by rivers were overestimated by the standard satellite data processing algorithms. River discharge and wind-driven upwelling were the major factors influencing surface chlorophyll-a variability for inshore regions. High in situ chlorophyll-a concentrations (≥1 mg m?3) occurred inshore and particularly near major river mouths during the summer seasons of 1998, 1999 and 2000. Plumes of Mississippi River water extended offshore to the southeast of the delta over distances >500 km from the river delta for maximum periods of 14 weeks between May and September every year and could reach the Florida Keys in certain years. The offshore transport of the plume was initiated by eastward or southeastward winds and then by separate anticyclonic eddies located southeast of the Mississippi delta and nearby shelf every year. Chlorophyll concentrations during the winter to spring transition in 1998 off Escambia, Choctawhatchee, Apalachicola and Suwannee Rivers and off Tampa Bay were up to 4 times higher than during the same periods in 1999 and 2000. This was related to higher freshwater discharge during the 1997–1998 winter–spring transition, coinciding with an El Niño–Southern Oscillation event, and to the unusually strong upwelling observed along the coast in spring 1998.  相似文献   

8.
In optically complex waters, it is important to evaluate the accuracy of the standard satellite chlorophyll-a (chl-a) concentration algorithms, and to develop accurate algorithms for monitoring the dynamics of chl-a concentration. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote-sensing reflectance and concurrent in situ measured chl-a (2010–2013) were used to evaluate the standard OC3M algorithm (ocean chlorophyll-a three-band algorithm for MODIS) and Graver–Siegel–Maritorena model version 1 (GSM01) algorithm for estimating chl-a concentration in the Bohai and Yellow Seas (BYS). The results showed that the chl-a algorithms of OC3M and GSM01 with global default parameters presented poor performance in the BYS (the mean absolute percentage difference (MAPD) and coefficient of determination (R2) of OC3M are 222.27% and 0.25, respectively; the MAPD and R2 of GSM01 are 118.08% and 0.07, respectively). A novel statistical algorithm based on the generalized additive model (GAM) was developed, with the aim of improving the satellite-derived chl-a accuracy. The GAM algorithm was established using the in situ measured chl-a concentration as the output variable, and the MODIS above water remote-sensing reflectance (visible bands at 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm) and bathymetry (water depth) as input variables. The MAPD and R2 calculated between the GAM and the in situ chl-a concentration are 39.96% and 0.67, respectively. The results suggest that the GAM algorithm can yield a superior performance in deriving chl-a concentrations relative to the standard OC3M and GSM01 algorithms in the BYS.  相似文献   

9.
Coastal-erosion models require accurate and detailed information on bio-physico-chemical properties of intertidal sediments. In this article, the potential of remotely sensed data at different spatial scales for the quantification of sediment properties was assessed. The focus on specific absorption features of water at 1450 nm, clay at 2206 nm and chlorophyll-a at 673 nm provided a physically based approach and interpretable results. The moisture content in unsaturated sediment could be accurately related to absorption (coefficient of determination r 2?=?0.89 and root-mean-square error of prediction (RMSEP)?=?3% relative gravimetric moisture content) in laboratory and field measurements. The empirical model relating chlorophyll-a content with its field absorption (r 2?=?0.6) was successful on airborne sensor measurements. Though suitable in laboratory conditions, the absorption of shortwave infrared light by clay was not observed in field or airborne spectra. The empirical models showed clear dependency on the study area and sensor, suggesting more research on intercalibration of spectrometers and on factors influencing the interaction of light with sediment properties.  相似文献   

10.
During winter, along the east coast of India, the near-surface flow is characterized by the southward-flowing East India Coastal Current (EICC) which bends around Sri Lanka and enters into the south-eastern Arabian Sea (AS). This current carries cooler, low-salinity waters from the head Bay of Bengal (BoB) into the south-eastern AS. But due to a lack of any direct in situ measurements, it is not clear whether any part of this current that flows through the Indo-Sri Lanka Channel (ISLC) is significant. An attempt is made in this study to look for any observational evidence for the southward flow of cooler, low salinity waters through the ISLC during winter. In the absence of direct in situ measurements on the observed currents in the non-navigable shallow ISLC, the observed high resolution, advanced very high resolution radiometer (AVHRR) sea surface temperature (SST), and sea-viewing wide field-of-view sensor (SeaWiFS) chlorophyll-a and historic sea surface salinity (SSS) data are utilized as tracers to track any southward water flow through the Pamban Pass and Adam's Bridge in the ISLC. The analysis suggests that both the non-navigable shallow Pamban Pass and the Adam's Bridge in the ISLC act as barriers and limit the southward flow of cooler, low salinity waters into the Gulf of Mannar in the south during winter.  相似文献   

11.
In this study, a harmful algal bloom (HAB) index, commonly known as a red tide index (RI), was developed and tested using in situ measurements in the shallow Arabian Gulf where periodical occurrence of red tide has been reported. The index is based on a combination of ratio and difference of bands centred at 443, 531, and 547 nm. The index was applied to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua imagery and compared with other proxies of HABs such as chlorophyll-a (chl-a) concentrations and fluorescence line height (FLH). Validation of the proposed index produced a positive correlation between the index and chlorophyll-a concentration with a determination coefficient (R2) of 0.61. Seasonality analysis of RI indicated that HABs in the Gulf region occur mainly in fall and winter. The inter-annual variations of RI showed similar patterns with the conventional chl-a product. This new index can provide insights into the dynamics of red tides and guidance for mitigation efforts, and assist in establishing an effective and timely forecasting and warning system for red tide.  相似文献   

12.
The first images from MODIS (Moderate Resolution Imaging Spectroradiometer) are now being used to evaluate information on the in vivo fluorescence peak near 685?nm from chlorophyll-a, stimulated by sunlight. The Fluorescence Line Imager (FLI) airborne imaging spectrometer was used in the 1980s to demonstrate the mapping of this signal from an aircraft, showing that it gave significant rejection of confusing signals from atmospheric radiance. For imaging from space, a major limitation is sensor sensitivity, which tends to restrict imaging to relatively high concentrations under good solar illumination. Noise-equivalent chlorophyll concentrations for MODIS and MERIS (Medium Resolution Imaging Spectrometer) have been estimated as 0.07 and 0.1?mg?m?3, respectively, under zenith Sun, clear sky conditions. Although MERIS has slightly poorer sensitivity, it has the advantage of flexible band placing and presence of a band at 709?nm in the baseline band-set that allows better definition of the continuum spectrum above which fluorescence is measured. This band should also allow detection of bright plankton blooms (red-tide events) through the peak radiance near 709?nm caused by a combination of in-water scattering and absorption.  相似文献   

13.
The influence of the optical properties of inorganic suspended solids (ISS) on in-water algorithms was evaluated using an optical model in highly turbid coastal water, whose ISS concentration reached several hundred grams per cubic metre. The measurements were conducted in the upper Gulf of Thailand. The backscattering coefficient of the ISS was calculated using the Lorenz–Mie scattering theory. On the basis of the measurement, the ISS size distribution was parameterized as a function of ISS concentration, and both the spherical and non-spherical particle shape models were evaluated. For ISS concentrations of 10 g m?3, an estimate of the chlorophyll-a (chl-a) concentration within a factor of 2 on a logarithmic scale is possible in a [chl-a] range of 4–30 mg m?3. The differential coefficient of remote sensing reflectance was calculated to evaluate its respective sensitivities for chl-a and ISS concentrations. The use of radiometric data at 670 nm (700–900 nm) is valid for in-water algorithms used to estimate chl-a (ISS) concentration in highly turbid coastal waters.  相似文献   

14.
Daily chlorophyll-a concentration from the Ocean Colour Monitor (OCM) sensor onboard the Indian Remote Sensing satellite (IRS-P4) is used to make weekly and monthly chlorophyll-a concentration maps. The pathwise swath data at 12 noon for every alternate day over the north Indian Ocean (NIO) during February 2004 and February 2005 were used to compare the existing algorithms for binning the data. Atmospherically corrected and geocorrected OCM data were used in the comparative study of three averaging algorithms – arithmetic mean (AVG), geometric mean (GEO) and maximum likelihood estimator (MLE). The analysis shows that the AVG algorithm is best suited when compared with the two other algorithms. However, for case 1 water, MLE gives nearly the same value as AVG. Based on this result, AVG was selected for operational weekly and monthly averaging of OCM data over the NIO. These high-resolution-derived chlorophyll-a weekly and monthly products will be useful to resolve inter-annual-to-decadal changes in chlorophyll-a concentration over the NIO.  相似文献   

15.
Accurate assessment of phytoplankton chlorophyll-a (chl-a) concentration in turbid waters by means of remote sensing is challenging because of the optical complexity of case 2 waters. We applied a bio-optical model of the form [R–1(λ1) – R–1(λ2)](λ3), where R(λi) is the remote-sensing reflectance at wavelength λi, to estimate chl-a concentration in coastal waters. The objectives of this article are (1) to validate the three-band bio-optical model using a data set collected in coastal waters, (2) to evaluate the extent to which the three-band bio-optical model could be applied to the spectral radiometer (SR) ISI921VF-512T data and the hyperspectral imager (HSI) data on board the Chinese HJ-1A satellite, (3) to evaluate the application prospects of HJ-1A HSI data in case 2 waters chl-a concentration mapping. The three-band model was calibrated using three SR spectral bands (λ1 = 664.9 nm, λ2 = 706.54 nm, and λ3 = 737.33 nm) and three HJ-1A HSI spectral bands (λ1 = 637.725 nm, λ2 = 711.495 nm, and λ3 = 753.750 nm). We assessed the accuracy of chl-a prediction with 21 in situ sample plots. Chl-a predicted by SR data was strongly correlated with observed chl-a (R2 = 0.93, root mean square error (RMSE) = 0.48 mg m–3, coefficient of variation (CV) (RMSE/mean(chl-amea)) = 3.72%). Chl-a predicted by HJ-1A HSI data was also closely correlated with observed chl-a (R2 = 0.78, RMSE = 0.45 mg m–3, CV (RMSE/mean(chl-amea)) = 7.51%). These findings demonstrate that the HJ-1A HSI data are promising for quantitative monitoring of chl-a in coastal case-2 waters.  相似文献   

16.
Water mass properties and sea ice history have a significant impact on the vertical distribution of phytoplankton in the Marginal Ice Zone of the northern Barents Sea. A method is suggested to identify the phase and magnitude of the phytoplankton bloom based on satellite observable values of chlorophyll-a, temperature, salinity and sea ice history. For each bloom phase, formulae are provided for calculation of the chlorophyll-a column from satellite-equivalent measurements of chlorophyll-a.  相似文献   

17.
The Medium Resolution Imaging Spectrometer (MERIS) sensor, with its good physical design, can provide excellent data for water colour monitoring. However, owing to the shortage of shortwave-infrared (SWIR) bands, the traditional near-infrared (NIR)–SWIR algorithm for atmospheric correction in inland turbid case II waters cannot be extended to the MERIS data directly, which limits its applications. In this study, we developed a modified NIR black pixel method for atmospheric correction of MERIS data in inland turbid case II waters. In the new method, two special NIR bands provided by MERIS data, an oxygen absorption band (O2 A-band, 761 nm) and a water vapour absorption band (vapour A-band, 900 nm), were introduced to keep the assumption of zero water-leaving reflectance valid according to the fact that both atmospheric transmittance and water-leaving reflectance are very small at these two bands. After addressing the aerosol wavelength dependence for the cases of single- and multiple-scattering conditions, we further validated the new method in two case lakes (Lake Dianchi in China and Lake Kasumigaura in Japan) by comparing the results with in situ measurements and other atmospheric correction algorithms, including Self-Contained Atmospheric Parameters Estimation for MERIS data (SCAPE-M) and the Basic ERS (European Remote Sensing Satellite) & ENVISAT (Environmental Satellite) (A)ATSR ((Advanced) Along-Track Scanning Radiometer) and MERIS (BEAM) processor. We found that the proposed method had acceptable accuracy in the bands within 560–754 nm (MERIS bands 5–10) (average absolute deviation (AAD) = 0.0081, average deviation (AD) = 0.0074), which are commonly used in the estimation models of chlorophyll-a (chl-a) concentrations. In addition, the performance of the new method was superior to that of the BEAM processor and only slightly worse than that of SCAPE-M in these bands. Considering its acceptable accuracy and simplicity both in principle and at implementation compared with the SCAPE-M method, the new method provides an option for atmospheric correction of MERIS data in inland turbid case II waters with applications aiming for chl-a estimation.  相似文献   

18.
Lake Erie is part of the Great Lakes systems in North America, which represent the largest continental lake systems in the world. Anthropogenic eutrophication in the Western Basin of Lake Erie, a Case II environment, has an adverse impact on the surrounding ecosystems and the regional economy. The optical complexity found in Lake Erie is a feature of many aquatic environments making it a challenging setting for remote-sensing applications. To assess the controls on these optical properties, we sampled 20 locations, encompassing a variety of optical environments in the Western Basin and Sandusky Bay during four research cruises. Strong correlations between light extinction and phycocyanin (correlation coefficient, r ≥ 0.95), suspended sediment (r = 0.90), and chlorophyll-a (r ≥ 0.86) indicate that surface conditions are representative down to at least the first optical depth. Application of varimax-rotated principal component analysis to lab-based, hyperspectral reflectance data identified three components related to a diatom/green algae community, and two blue-green algae communities, one of which was associated with suspended sediment. Phycocyanin and chlorophyll-a content inferred using a semi-analytic red/near-infrared algorithm correlated well with concentrations measured in situ using a multiparameter sonde. Chlorophyll-a retrievals from a regional, blue : green algorithm developed for the Western Basin of Lake Erie compared well with retrievals from the semi-analytic algorithm for all samples from the Western Basin and 25% of samples from Sandusky Bay. Chlorophyll-a retrieval errors using the blue : green algorithm occurred when high ratios of suspended sediment to phycocyanin biased samples from the extremely turbid waters of Sandusky Bay. The bias likely resulted when suspended sediment altered the blue : green ratio or when phycocyanin interfered with the chlorophyll-a absorption peaks. This approach can be applied to other Case II environments to provide insights during the design of experimental field studies and for spectral band selection with the next generation of visible near-infrared remote-sensing instruments.  相似文献   

19.
This study examined satellite chlorophyll-a (chl-a) concentration and in situ observations in Sanya Bay (SYB). In situ observation of chl-a was conducted four times per year at 12 sampling stations in SYB from January 2004 to October 2008. Monthly satellite chl-a was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) during 2000–2012. This study compared satellite chl-a values to in situ measurements in SYB. The two data sets match well in the whole region except for two estuaries. Results show that the average in situ chl-a was 1.49 mg m?3 in SYB. Chl-a was relatively higher (>2 mg m?3) and more variable in coastal areas, with a tendency to decrease offshore (<0.4 mg m?3). The chl-a level in summer displayed obviously vertical stratification, with higher values at the bottom and lower values at the surface. Analysis of monthly mean chl-a showed that the highest level (>2 mg m?3) appeared in December, with the lowest in March (<1 mg m?3). The gradients are ranked winter, autumn, summer and spring. There was higher chl-a in autumn and winter, which may be associated with the stronger wind monsoon then. Annual mean chl-a from 2000 to 2012 varied from 1.17 to 2.05 mg m?3, with the minimum in 2001 and the maximum in 2005. The chl-a level presented a roughly increasing tendency from 2000 to 2012, which may be related to the increasing nutrients associated with the development of tourism and fishery.  相似文献   

20.
It is acknowledged that fluorescence line height (FLH) algorithms are still hampered by the uncertainty of fluorescence peak position. The fluorescence peak moves to longer wavelengths with the increase of chlorophyll a concentration. In this article, the fluorescence enveloped area (FEA), which integrates the fluorescence height and the fluorescence peak position, was used to estimate the chlorophyll a concentration in the coastal waters of the Pearl River Estuary. The FEA algorithm was developed from in situ data of chlorophyll a concentration, total suspended matter (TSM) concentration and above-water remote sensing reflectance, which were collected at 37 sampling stations in the Pearl River Estuary during two cruises. The results showed that the FEA algorithm made a better estimation of chlorophyll a concentration compared with the widely used FLH algorithm and moving fluorescence line height (MFLH) algorithm. These three algorithms were applied to the Pearl River Estuary for retrieval of chlorophyll a concentration from Hyperion data acquired on 21 December 2006. Compared with the FLH and the MFLH, the FEA algorithm showed a rational distribution of the chlorophyll a concentration in the Pearl River Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号