首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
为寻找环保新型停炉保护剂,采用高压釜模拟高温高压的水汽系统环境,采用正交试验优选了高温高压和碱性条件下,对苯二酚分别在气液和液相中对20碳钢的钝化保护条件,并综合分析得到气液相最佳保护工艺条件.采用酸性硫酸铜点滴试验、接触角测试、交流阻抗谱、扫描电镜等评价钝化膜的性能.结果表明:当对苯二酚浓度为50 mg/L,温度为280℃,恒温时间为4h,pH值为11时,对苯二酚在20碳钢试片表面的成膜效果最佳,钝化保护效果最好,其中恒温温度对气液相中成膜效果影响最大.  相似文献   

2.
为提高镀锌层钛盐彩色钝化膜的耐蚀性能,改善钝化膜的外观,缩短钝化时间,采用正交试验对镀锌层钛盐彩色钝化液的组分进行优选,并用单因素试验研究了工艺参数(钝化液温度、p H值、钝化时间、干燥方式)对彩色钝化膜外观及其耐蚀性的影响。结果表明:镀锌层钛盐彩色钝化工艺最佳方案为8 m L/L Ti Cl3,15 g/L Na NO3,10 m L/L H2O2,4 g/L DK-TC添加剂,p H值为1.5~2.0,温度为30℃,钝化时间为15~25 s,干燥方式对钝化膜耐蚀性的影响不大;该工艺能获得外观艳丽、光亮的彩色钝化膜,钝化膜中性盐雾试验出现白锈时间可达80.0 h,硫酸铜点滴时间在40 s以上。  相似文献   

3.
吕雪飞  吕颖  甘树坤 《材料保护》2019,52(4):102-105
为了提高H62黄铜合金的表面性能,通过正交试验获得了最佳锅、钵双稀土处理液配方。利用硝酸点滴、中性盐雾试验评价了H62黄铜合金钝化膜的耐蚀性能,通过电子探针(EPMA)观测了其表面形态结构及元素分布,利用电化学方法表征了 H62黄铜表面钝化膜在3.5%NaCl溶液中的缓蚀行为,采用XRD对H62黄铜表面钝化膜的成分进行了检测。结果表明:H62黄铜合金由镉、钵双稀土处理液钝化成膜的主要成分为Cu2O,CeO2,La(OH)3,Ce(OH)4;致密的钝化膜耐硝酸点滴时间达到21.98s,在3.5%NaCl溶液自腐蚀电位增加,腐蚀电流降低,腐蚀速度明显降低,耐蚀性能增加,耐中性盐雾性能明显优于鋪单一稀土处理液。  相似文献   

4.
为加强环保,进一步提高镀锌钢彩色钝化膜的耐蚀性能,采用硅酸盐和有机酸单宁酸对镀锌钢板表面进行复合钝化,采用醋酸铅点滴试验和中性盐雾试验研究了钝化膜的耐蚀性能,并对复合钝化液的组分及工艺条件进行优选。结果表明:优选工艺为35 g/L Na2SiO3,10 mL/L H2O2(30%),5 mL/L H2SO4(98%),2 g/L CuSO4,5 g/L单宁酸,10 g/L NaNO3,pH值为2.0,温度为50℃,钝化时间30 s,钝化封闭后于60~70℃老化5~10 min;钝化膜外观为均匀彩色,与基体附着力良好,耐醋酸铅点滴腐蚀时间为79 s,耐中性盐雾腐蚀时间达128 h,其耐蚀性能虽不及六价铬钝化膜,但优于三价铬钝化膜。  相似文献   

5.
陈二军  党璐玮 《材料保护》2022,55(1):142-146
为了提升汽车铝合金零部件的表面耐蚀性,采用硫酸铬化学钝化方案,研究了5052铝合金表面钝化工艺及钝化膜的耐蚀性能.探究了钝化液中Cr2(SO4)3浓度、K2ZrF6活性剂浓度及钝化时间对钝化质量的影响,并采用中性盐雾试验、硫酸铜点滴试验评价了钝化膜的耐蚀性能.试验结果表明:硫酸铬浓度1.0 g/L,氟锆酸钾浓度2.5 ...  相似文献   

6.
为提高镀锌层硅钛复合钝化膜的耐蚀性能,缩短钝化时间,改善钝化液的稳定性,采用正交试验对镀锌层硅钛复合钝化工艺进行了优化。通过对样品复合钝化膜的Tafel曲线测试、5%Cu SO_4点滴测试和中性盐雾腐蚀测试,研究了硅钛复合钝化工艺参数对钝化膜外观和耐蚀性的影响。结果表明:硅钛复合钝化液的最佳配方及工艺条件为10 g/L Na_2Si O_3·9H_2O,10 g/L Na NO_3,2 m L/L Ti Cl_3,5 m L/L H_2O_2,2 g/L KF,p H=2.0,钝化时间30 s,钝化温度25℃,60℃恒温烘干10 s;本工艺获得的钝化膜中性盐雾试验出白锈时间为72.0 h,与三价铬钝化膜耐蚀性能相当。  相似文献   

7.
采用化学浸渍法在装饰用H62铜合金表面制备了不同转化膜,优化了单一稀土盐和复合(Ce+La)盐转化膜的钝化液配方,对比分析了未加稀土盐、单一Ce盐、单一La盐和(Ce+La)盐试样的耐蚀性能和作用机理。结果表明,单一稀土盐的钝化液中硝酸镧/硝酸铈含量为8%时的转化膜具有最佳的耐腐蚀性能;复合(Ce+La)盐最优钝化工艺为硝酸镧/硝酸铈=4/4 g/L、C_6H_5N_3浓度15 g/L、Na_2MoO_4浓度2 g/L、C_6H_8O_7浓度13 g/L、C_7H_6O_6S. 2H_2O浓度9 g/L、SDBS浓度0.2 g/L、钝化温度48℃、钝化时间4 min;不同转化膜试样的硝酸点滴、中性盐雾、静态浸泡腐蚀和电化学腐蚀性能测试结果具有一致性,即耐性能从低至高顺序为:未加稀土盐单一Ce盐单一La盐(Ce+La)盐,在钝化液中添加稀土盐有助于提高转化膜膜层厚度,并增强转化膜的耐蚀性能,且复合添加(Ce+La)盐可获得相对单一稀土盐更好的钝化效果。  相似文献   

8.
无机-有机硅烷复合钝化膜的性能   总被引:1,自引:0,他引:1  
为了扩大硅烷与无机盐复合钝化的应用范围,简化工艺,降低成本,以硅烷偶联剂为主成膜物,磷酸盐、氟钛酸盐作钝化剂,Na2MoO4和NH4VO3作缓蚀剂,一步钝化制备了无机-有机硅烷复合钝化膜。采用扫描电子显微镜、硫酸铜点滴腐蚀、盐水浸泡、中性盐雾试验、电化学测试等技术对钝化膜层的微观形貌、性能进行了分析。结果表明:无机。有机硅烷复合钝化膜在锌层表面起到了化学和物理的屏障作用,可以阻止腐蚀过程中的极化反应和锌的溶解,增强镀锌钢板的耐蚀性;无机-有机硅烷复合钝化膜的腐蚀面积小于5%,极化阻抗达到9kΩ,耐蚀性能接近铬酸盐钝化膜。  相似文献   

9.
为了进一步提高热浸镀锌层钝化膜的耐蚀性能,针对目前无铬钝化多为独立体系的有机物钝化或无机物钝化的情况,运用有机物与无机物进行复合钝化。通过正交试验法确立了热浸镀锌层无色钝化工艺,采用单因素变量法、点滴试验、中性盐雾腐蚀试验及电化学测试技术,研究了复合钝化工艺参数对钝化膜外观和耐蚀性的影响。结果表明:最佳复合钝化工艺为40 g/L丙烯酸树脂,20 g/L硝酸钠,40 g/L硅酸钠,15 m L/L过氧化氢;p H值11,钝化时间30 s,温度30℃,恒温烘干;钝化膜的耐蚀性能接近于三价铬钝化。  相似文献   

10.
吕雪飞  李淑英 《材料保护》2014,(10):45-47,8
为了进一步提高黄铜的耐蚀性,在其钝化液中加入镧盐和苯并三氮唑(BTAH)进行钝化。通过扫描电镜及X射线衍射分析了钝化膜的表面形貌、成分及结构;利用硝酸点滴及中性盐雾试验测试其耐蚀性,利用电化学极化曲线研究镧盐、BTAH单独及共同使用时对黄铜的缓蚀性能。结果表明:BTAH和镧盐具有良好的协同作用,钝化液中同时加入镧盐及BTAH所得复合钝化膜的耐硝酸点滴时间达21 s,耐中性盐雾12 h表面无明显变化;钝化液中镧盐及BTAH协同作用,使黄铜阳极腐蚀电流减小,腐蚀速度降低,使黄铜的耐蚀性能显著增强。  相似文献   

11.
为进一步提高三价铬彩色钝化膜的性能,在无机钝化液中加入有机硅树脂,制备了一种新型高耐蚀性能三价铬彩色钝化液。该钝化液可以在镀锌板表面形成有机-无机复合钝化膜,通过红外光谱仪分析钝化膜结构,采用扫描电镜观察钝化膜微观形貌,用能谱仪分析钝化膜的微观组成,采用电化学试验、中性盐雾试验对钝化膜耐蚀性能进行表征。以正交试验对三价铬彩色钝化液组分进行了优选,以单因素试验研究了钝化温度、钝化液pH值、钝化时间等钝化条件对钝化膜耐腐蚀性能的影响。结果表明:最佳钝化液成分为硫酸铬10.00 g/L,硅树脂12.50 g/L,硝酸钠4.00 g/L,硝酸镍1.25 g/L,氯化钠2.00 g/L;最佳钝化条件为温度30℃,时间150 s,pH值1.8;以最优条件制得的钝化膜色彩鲜艳,耐蚀性能突出,耐中性盐雾腐蚀时间达196 h。  相似文献   

12.
为了寻求环保、工艺技术稳定、性能优良、能投入生产的碱性镀锌层三价铬黑色钝化工艺,通过平行试验优选了碱性镀锌层三价铬黑色钝化基础液的组分,通过中性盐雾腐蚀及电化学方法测试了钝化膜的耐蚀性,确定了最佳钝化液组成及钝化工艺参数。结果表明:黑色钝化液最佳组分为0.1 mol/L Cr3+[三氯化铬∶硝酸铬=(3~5)∶1,摩尔比],有机酸配体/Cr(摩尔比)=1.6,5.0 g/L硫酸钴,3.0 g/L硫酸镍,0.5 g/L硫酸铜,10 g/L磷酸二氢钾,5.0 g/L醋酸;最佳钝化参数为温度30℃,pH值2.0,时间45 s;以此钝化工艺对碱性镀锌层进行常温黑色钝化,然后经WS-1封闭剂封闭处理,可得到黑色光亮的钝化膜,其中性盐雾腐蚀出白锈时间超过96 h。  相似文献   

13.
为实现高速铁路铝合金车体无涂装处理,开发了铝合金低温无铬复合钝化处理工艺,并通过中性盐雾试验、人工加速老化试验、耐酸、耐硫酸铜点滴试验及硬度测试考察了钝化膜的性能。通过正交试验优选出钝化液最佳配方:3.0g/LH_2TiF_6,2.0g/LK_2ZrF_6,2.0g/LNaF,10.0g/L硫酸盐,4.0g/L有机酸N;通过单因素试验研究了工艺参数对膜层外观和耐蚀性的影响,获得最佳钝化工艺参数为:pH值3.5~4.5,温度常温,钝化时间1.0~2.0min。最后将钝化膜在硅烷和水性氟碳树脂的混合溶液中于20~30℃下封闭90~150s并作不同干燥处理。结果显示:封闭后的复合钝化膜自然晾干时耐中性盐雾380h,经热风60℃干燥20min后耐中性盐雾时间可达500h,大大提高了膜层的耐蚀性能。  相似文献   

14.
镀锌板经单纯的有机、无机钝化均不能满足工业生产需求,而目前在2种有机钝化剂中添加无机钝化剂的研究鲜见报道.将KH560和KH858 2种有机硅烷复合作为有机硅烷钝化液,再添加CoSO4·7H2O复配,用其浸涂热镀锌板制成钴盐有机硅烷复合转化膜.采用Tafel极化曲线、交流阻抗、盐水浸泡和中性盐雾试验研究钴盐加入前后转化膜耐蚀性的变化.结果表明:相比于有机硅烷转化膜,加入钴盐后形成的钴盐有机硅烷复合转化膜阻抗增大,自腐蚀电流密度减小,耐蚀性明显改善,中性盐雾腐蚀72 h后腐蚀面积仅7%.  相似文献   

15.
为提高镀锌层硅酸盐彩色钝化膜的耐蚀性能,缩短钝化时间,采用正交试验法对镀锌层硅酸盐彩色钝化工艺进行了优化。通过对彩色钝化膜的Tafel曲线测试、阻抗测试、5%CuSO4点滴、中性盐雾腐蚀,研究工艺参数对钝化膜外观和耐蚀性的影响。结果表明,最佳工艺条件:25 g/L硅酸钠,8 g/L硫酸锌,15 mL/L双氧水,14g/L DK-WSC;pH值2.5~3.0,温度30℃,钝化时间80~120 s。本工艺能获得外观艳丽、光亮的膜层;钝化膜中性盐雾腐蚀出白锈时间达75 h。  相似文献   

16.
对镀锌钢板进行混合稀土和三聚磷酸盐的协同钝化,通过中性盐雾试验、3%CuSO4点滴试验和电化学测试研究了稀土与三聚磷酸盐复合钝化膜的耐蚀性能。结果显示:稀土与三聚磷酸盐复合钝化膜明显提高了镀锌层的自腐蚀电位,大大提高了镀锌钢板的防护性能,且其耐蚀性明显优于低铬酸盐钝化膜。  相似文献   

17.
通过阳极极化曲线测试、交流阻抗测试、腐蚀失重测试等方法研究了排水管系统中碳纤维偶接碳钢的腐蚀行为及其作用机理。结果表明,偶接碳纤维后的碳钢在模拟孔隙液中的腐蚀敏感性增加,且氯离子浓度越高这种腐蚀倾向性越大;模拟孔隙液中腐蚀速率从高至低依次为:0.4%碳纤维碳钢0.2%碳纤维碳钢碳钢;通过控制碳纤维的添加量和降低介质中的氯离子浓度可以提高钢筋混凝土桩的耐腐蚀性能。  相似文献   

18.
采用交流阻抗谱和tafel极化曲线研究了不同镀锌体系三价铬彩色和蓝色钝化封闭处理前后的电化学性能。结果表明:三价铬彩色钝化,无氰碱性镀锌得到的钝化层色彩艳丽,且阻抗值较大,自腐蚀电流较小;三价铬蓝白钝化,酸性镀锌得到的钝化层均匀蓝白,且阻抗值较大,自腐蚀电流较小;封闭后,钝化层的阻抗值上升近5倍,自腐蚀电流降低1-2个数量级,但彩色钝化膜的颜色消退;电化学测试获得的结果与耐蚀性-中性盐雾结果相吻合,因此电化学性能测试可作为选择镀锌体系、钝化体系和封闭体系的一种方法。  相似文献   

19.
贺旭东  郭瑞光 《材料保护》2013,(11):44-46,50,7
为了提高偏钒酸铵、氟硅酸盐转化液制备的镁合金表面无铬转化膜的耐蚀性能,在该转化液中加入硝酸铈制备了V-Ce复合转化膜。采用单因素试验对转化液中的有效耐蚀成分偏钒酸铵和硝酸铈的浓度和反应条件进行了优化;采用扫描电镜和能谱分析转化膜的形貌和成分,采用中性盐雾试验考察了膜层的耐蚀性能。结果表明:最佳转化膜成膜条件为1.20 g/L偏钒酸铵、0.24 g/L氟硅酸盐、4.00 g/L硝酸铈,pH值为2.0~3.0,50℃,20~30 min;最佳条件获得的转化膜主要由24%V,17%Ce,13%Mg,16%O(质量分数)组成,转化膜中的无定形结构和高含量的耐蚀钒、铈氧化物成分使其耐蚀性能显著提高,转化膜自腐蚀电位较基体正移了141mV,腐蚀电流密度仅为基体的1/26,耐盐雾时间达72 h。  相似文献   

20.
不同添加剂对镀锌层钼酸盐钝化膜腐蚀电化学性能的影响   总被引:7,自引:1,他引:6  
利用塔菲尔(Tafel)极化曲线和电化学交流阻抗谱,研究了不同添加剂单乙醇胺、硝酸铈、植酸和羟己叉基二膦酸对镀锌层钼酸盐钝化膜腐蚀电化学性能的影响,并与加速腐蚀试验结果进行了对比.结果表明,添加剂的加入明显改变了钝化膜层的自腐蚀电位,使钼酸盐钝化膜的耐腐蚀性明显增强,且钝化膜的阻抗谱呈明显单一的容抗弧,腐蚀过程受电化学控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号