首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we describe the design, synthesis, and biological evaluation of new hydroxamic tertiary amines as histone deacetylase (HDAC) inhibitors. These compounds have allowed us to clarify the influence of cap group dimension and hydrophobicity on HDAC inhibitory activity. This report also reveals the recognition pattern between the linear compounds and the histone deacetylase-like protein (HDLP) model receptor, and discusses the synthesis and in vitro evaluation of HDAC inhibitory activity in HeLa cell nuclear extracts. We obtained good qualitative agreement between experimental results and theoretical predictions, confirming that appropriately substituted hydroxamic tertiary amines are potential active HDAC inhibitors.  相似文献   

2.
In the present study, a novel series of 11 urushiol-based hydroxamic acid histone deacetylase (HDAC) inhibitors was designed, synthesized, and biologically evaluated. Compounds 1 – 11 exhibited good to excellent inhibitory activities against HDAC1/2/3 (IC50: 42.09–240.17 nM) and HDAC8 (IC50: 16.11–41.15 nM) in vitro, with negligible activity against HDAC6 (>1409.59 nM). Considering HDAC8, docking experiments revealed some important features contributing to inhibitory activity. According to Western blot analysis, select compounds could notably enhance the acetylation of histone H3 and SMC3 but not-tubulin, indicating their privileged structure is appropriate for targeting class I HDACs. Furthermore, antiproliferation assays revealed that six compounds exerted greater in vitro antiproliferative activity against four human cancer cell lines (A2780, HT-29, MDA-MB-231, and HepG2, with IC50 values ranging from 2.31–5.13 μM) than suberoylanilide hydroxamic acid; administration of these compounds induced marked apoptosis in MDA-MB-231 cells, with cell cycle arrest in the G2/M phase. Collectively, specific synthesized compounds could be further optimized and biologically explored as antitumor agents.  相似文献   

3.
Schistosomiasis is a neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy relies on mass treatment with only one drug: praziquantel. Based on the 3‐chlorobenzothiophene‐2‐hydroxamic acid J1075 , a series of hydroxamic acids with different scaffolds were prepared as potential inhibitors of Schistosoma mansoni histone deacetylase 8 (SmHDAC8). The crystal structures of SmHDAC8 with four inhibitors provided insight into the binding mode and orientation of molecules in the binding pocket as well as the orientation of its flexible amino acid residues. The compounds were evaluated in screens for inhibitory activity against schistosome and human HDACs. The most promising compounds were further investigated for their activity toward the major human HDAC isotypes. The most potent inhibitors were additionally screened for lethality against the schistosome larval stage using a fluorescence‐based assay. Two of the compounds showed significant, dose‐dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.  相似文献   

4.
Mercaptoacetamide-based ligands have been designed as a new class of histone deacetylase (HDAC) inhibitors for possible use in the treatment of neurodegenerative diseases. The thiol group of these compounds provides a key binding element for interaction with the catalytic zinc ion, and thus differs from the more typically employed hydroxamic acid based zinc binding groups. Herein we disclose the chemistry and biology of some substituted mercaptoacetamides with the intention of increasing HDAC6 isoform selectivity while maintaining potency similar to their hydroxamic acid analogues. The introduction of a stereocenter α to the thiol group was found to have a considerable impact on HDAC inhibitor potency. These new compounds were also profiled for their therapeutic potential in an in?vitro model of stress-induced neuronal injury and were found to act as nontoxic neuroprotective agents.  相似文献   

5.
Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.  相似文献   

6.
A series of small‐molecule histone deacetylase (HDAC) inhibitors, which feature zinc binding groups derived from cysteine, were synthesized. These inhibitors were tested against multiple HDAC isoforms, and the most potent, compound 10 , was determined to have IC50 values below 1 μM . The compounds were also tested in a cellular assay of oxidative stress‐induced neurodegeneration. Many of the inhibitors gave near‐complete protection against cell death at 10 μM without the neurotoxicity seen with hydroxamic acid‐based inhibitors, and were far more neuroprotective than HDAC inhibitors currently in clinical trials. Both enantiomers of cysteine were used in the synthesis of a variety of novel zinc‐binding groups (ZBGs). Derivatives of L ‐cysteine were active in the HDAC inhibition assays, while the derivatives of D ‐cysteine were inactive. Notably, the finding that both the D ‐ and L ‐cysteine derivatives were active in the neuroprotection assays suggests that multiple mechanisms are working to protect the neurons from cell death. Molecular modeling was employed to investigate the differences in inhibitory activity between the HDAC inhibitors generated from the two enantiomeric forms of cysteine.  相似文献   

7.
Histone deacetylase (HDAC) inhibitors are regarded as promising therapeutics for the treatment of cancer. All reported HDAC inhibitors contain three pharmacophoric features: a zinc‐chelating group, a hydrophobic linker, and a hydrophobic cap for surface recognition. In this study we investigated the effectiveness of osthole, a hydrophobic Chinese herbal compound, as the surface recognition cap in hydroxamate‐based compounds as inhibitors of HDAC. Nine novel osthole‐based N‐hydroxycinnamides were synthesized and screened for enzyme inhibition activity. Compounds 9 d , 9 e , 9 g exhibited inhibitory activities (IC50=24.5, 20.0, 19.6 nM ) against nuclear HDACs in HeLa cells comparable to that of suberoylanilide hydroxamic acid (SAHA; IC50=24.5 nM ), a potent inhibitor clinically used for the treatment of cutaneous T‐cell lymphoma (CTCL). While compounds 9 d and 9 e showed SAHA‐like activity towards HDAC1 and HDAC6, compound 9 g was more selective for HDAC1. Compound 9 d exhibited the best cellular effect, which was comparable to that of SAHA, of enhancing acetylation of either α‐tubulin or histone H3. Molecular docking analysis showed that the osthole moiety of compound 9 d may interact with the same hydrophobic surface pocket exploited by SAHA and it may be modified to provide class‐specific selectivity. These results suggest that osthole is an effective hydrophobic cap when incorporated into N‐hydroxycinnamide‐derived HDAC inhibitors.  相似文献   

8.
A novel series of hybrids was designed and synthesized by combining key elements from farnesylthiosalicylic acid (FTS) and hydroxamic acid. Several 3,7,11‐trimethyldodeca‐2,6,10‐trien‐1‐yl) thio)benzamide derivatives, particularly those with branched and linear aliphatic linkers between the hydroxamic zinc binding group (ZBG) and the benzamide core, not only displayed significant antitumor activities against six human cancer cells but also exhibited histone deacetylase (HDAC) inhibitory effects in vitro. Among them, N‐(4‐(hydroxyamino)‐4‐oxobutyl)‐2‐(((2E,6E)‐3,7,11‐trimethyldodeca‐2,6, 10‐trien‐1‐yl)thio)benzamide ( 8 d ) was the most potent, with IC50 values of 4.9–7.6 μM ; these activities are eight‐ to sixteen‐fold more potent than FTS and comparable to that of suberoylanilide hydroxamic acid (SAHA). Derivative 8 d induced cell cycle arrest in the G0/G1 phase, inhibited the acetylation of histone H3 and α‐tubulin, and blocked Ras‐related signaling pathways in a dose‐dependent manner. The improved tumor growth inhibition and cell‐cycle arrest in vitro might result from the dual inhibition. These findings suggest dual inhibitors of Ras‐related signaling pathway and HDAC hold promise as therapeutic agents for the treatment of cancer.  相似文献   

9.
The inhibitors of histone deacetylases (HDACs) have drawn a great deal of attention due to their promising potential as small‐molecule therapeutics for the treatment of cancer. By means of virtual screening with docking simulations under consideration of the effects of ligand solvation, we were able to identify six novel HDAC inhibitors with IC50 values ranging from 1 to 100 μM . These newly identified inhibitors are structurally diverse and have various chelating groups for the active site zinc ion, including N‐[1,3,4]thiadiazol‐2‐yl sulfonamide, N‐thiazol‐2‐yl sulfonamide, and hydroxamic acid moieties. The former two groups are included in many drugs in current clinical use and have not yet been reported as HDAC inhibitors. Therefore, they can be considered as new inhibitor scaffolds for the development of anticancer drugs by structure–activity relationship studies to improve the inhibitory activities against HDACs. Interactions with the HDAC1 active site residues responsible for stabilizing these new inhibitors are addressed in detail.  相似文献   

10.
11.
Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.  相似文献   

12.
The short-chain fatty acid butyrate, produced by the gut microbiota, acts as a potent histone deacetylase (HDAC) inhibitor. We assessed possible ameliorative effects of butyrate, relative to other HDAC inhibitors, in in vitro and in vivo models of Rubinstein–Taybi syndrome (RSTS), a severe neurodevelopmental disorder caused by variants in the genes encoding the histone acetyltransferases CBP and p300. In RSTS cell lines, butyrate led to the patient-specific rescue of acetylation defects at subtoxic concentrations. Remarkably, we observed that the commensal gut microbiota composition in a cohort of RSTS patients is significantly depleted in butyrate-producing bacteria compared to healthy siblings. We demonstrate that the effects of butyrate and the differences in microbiota composition are conserved in a Drosophila melanogaster mutant for CBP, enabling future dissection of the gut–host interactions in an in vivo RSTS model. This study sheds light on microbiota composition in a chromatinopathy, paving the way for novel therapeutic interventions.  相似文献   

13.
14.
The overexpression of histone deacetylase 8 (HDAC8) causes several diseases, and the selective inhibition of HDAC8 has been touted as a promising therapeutic strategy due to its fewer side effects. However, the mechanism of HDAC8 selective inhibition remains unclear. In this study, flexible docking and in silico mutation were used to explore the structural change of methionine (M274) during HDAC8 binding to inhibitors, along with the reason for this change. Meanwhile, steered and conventional molecular dynamics simulations were employed to explore the stability of the structural change. The findings suggest that M274 acts as a “switch” to control the exposure of the HDAC8-selective pocket. The structure of M274 changes from flipped-out to flipped-in only when L-shaped inhibitors bind to HDAC8. This structural change forms a groove that allows these inhibitors to enter the selective pocket. In other HDACs, a leucine residue replaces M274 in situ, and the same structural change is not observed. The findings reveal the mechanism of selective HDAC8 inhibition and provide guidance for the development of novel selective inhibitors.  相似文献   

15.
16.
Inhibition of histone deacetylase (HDAC) enzymes has emerged as a target for development of cancer chemotherapy. Four compounds have gained approval for clinical use by the Food and Drug Administration in the US, and several are currently in clinical trials. However, none of these compounds possesses particularly good isozyme selectivity, which would be a highly desirable feature in a tool compound. Whether selective inhibition of individual HDAC isozymes will provide improved drug candidates remains to be seen. Nevertheless, it has been speculated that using macrocyclic compounds to target HDAC enzymes might hold an advantage over the use of traditional hydroxamic‐acid‐containing inhibitors, which rely on chelation to the conserved active‐site zinc ion. Here we review the literature on macrocyclic HDAC inhibitors obtained from natural sources and on structure–activity relationship studies inspired by these molecules, as well as on efforts aimed at fully synthetic macrocyclic HDAC inhibitors.  相似文献   

17.
To test the involvement of histone deacetylases (HDACs) activity in endothelial lineage progression, we investigated the effects of HDAC inhibitors on endothelial progenitors cells (EPCs) derived from umbilical cord blood (UCB). Adherent EPCs, that expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR2) revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA), Trichostatin A (TSA), and Valproic acid (VPA). RT-PCR assay showed that HDAC inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC inhibitors selectively reduce the expression of VEGFR2, CD117, VE-cadherin, and ICAM-1, whereas the expression of CD34 and CD45 remained unchanged, demonstrating that HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR demonstrated that TSA down-regulated telomerase activity probably via suppression of hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell motility was also decreased after treatment with HDAC inhibitors as shown by wound-healing assay. The balance of acethylation/deacethylation kept in control by the activity of HAT (histone acetyltransferases)/HDAC enzymes play an important role in differentiation of stem cells by regulating proliferation and endothelial lineage commitment.  相似文献   

18.
Histone deacetylase enzymes (HDACs) are responsible for the global silencing of tumour-suppressor genes. Treatment with a histone deacetylase inhibitor (HDACi) can reverse this process and restore normal cell function. Herein, we report a small series of boron-based (boronic acid, boronate ester and closo-1,2-carborane) HDAC2 inhibitors with IC50 values in the nanomolar range. The boronate ester 4 b was the most potent compound assessed in this study (IC50=40.6±1.5 nM), followed closely by the 1,2-closo-carborane (IC50=42.9±1.5 nM). Compound 4 b exceeds the potency of the related gold-standard HDAC pan-inhibitor vorinostat ( 1 ) toward this particular HDAC isoform.  相似文献   

19.
Histone deacetylases (HDACs) are important enzymes in epigenetic regulation and are therapeutic targets for cancer. Most zinc‐dependent HDACs induce proliferation, dedifferentiation, and anti‐apoptotic effects in cancer cells. We designed and synthesized a new series of pyridone‐based HDAC inhibitors that have a pyridone ring in the core structure and a conjugated system with an olefin connecting the hydroxamic acid moiety. Consequently, most of the selected pyridone‐based HDAC inhibitors showed similar or higher inhibition profiles in addition to remarkable metabolic stability against hydrolysis relative to the corresponding lactam‐based HDAC inhibitors. Furthermore, the selectivity of the novel pyridine‐based compounds was evaluated across all of the HDAC isoforms. One of these compounds, (E)‐N‐hydroxy‐3‐{1‐[3‐(naphthalen‐2‐yl)propyl]‐2‐oxo‐1,2‐dihydropyridin‐3‐yl}acrylamide, exhibited the highest level of HDAC inhibition (IC50=0.07 μM ), highly selective inhibition of class I HDAC1 and class II HDAC6 enzymes, metabolic stability in mouse liver microsomal studies, and effective growth inhibition of various cancer cell lines. Docking studies indicated that a long alkyl linker and bulky hydrophobic cap groups affect in vitro activities. Overall, the findings reported herein regarding pyridone‐based HDAC inhibitors can be used to guide future research efforts to develop new and effective anticancer therapeutics.  相似文献   

20.
The acetylome is important for maintaining the homeostasis of cells. Abnormal changes can result in the pathogenesis of immunological or neurological diseases, and degeneration can promote the manifestation of cancer. In particular, pharmacological intervention in the acetylome with pan-histone deacetylase (HDAC) inhibitors is clinically validated. However, these drugs exhibit an undesirable risk-benefit profile due to severe side effects. Selective HDAC inhibitors might promote patient compliance and represent a valuable opportunity in personalised medicine. Therefore, we envisioned the development of HDAC6-selective inhibitors. During our lead structure identification, we demonstrated that an alkoxyurea-based connecting unit proves to be beneficial for HDAC6 selectivity and established the synthesis of alkoxyurea-based hydroxamic acids. Herein, we report highly potent N-alkoxyurea-based hydroxamic acids with improved HDAC6 preference compared to nexturastat A. We further validated the biological activity of these oxa analogues of nexturastat A in a broad subset of leukaemia cell lines and demonstrated their superior anti-proliferative properties compared to nexturastat A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号