首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Waterborne castor oil-recycled polyol based polyurethane-silica nanocomposite adhesives (WPU) with polymer matrix and silica nanoparticles chemically bonded have been successfully prepared through a sol-gel process. A series of waterborne polyurethane adhesives with hard segment contents from 71.3 to 74.5 wt%, were synthesized using an isophorone diisocyanate, 2-bis(hydroxymethyl) propionic acid, recycled castor oil-based as soft segments and (3-aminopropyl)triethoxysilane (APTES) as chain extender. The depolymerized oligoester obtained from glycolysis of poly(ethylene terephthalate) (PET) waste using triethylene glycol (TEG), was transesterified with castor oil (CO) which resulted in the formation of hydroxyl-functional polyester polyol, with hydroxyl value of 414 mgKOH g−1. The molecular structures and mass of glycolyzed PET oligoesters, castor oil-based polyol and castor oil-based polyurethane-silica nanocomposite adhesives were estimated by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The structure and properties of the resulting films were investigated by FTIR, wide angle X-ray diffraction measurement (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). TG analysis indicated that APTES can improve the thermal stability of WPU. XRD showed that the crystallinity of WPU decreased with the increase alkoxysilane content. The extent of crosslinking was investigated to show a dependence on silica concentration, which increased the glass transition temperature and particle size of polyurethane nanocomposites with increasing alkoxysilane content due to the condensation of the alkoxysilane groups. The hardness, adhesion and gloss quality of the polyurethane films were also determined considering the effect of APTES content, so this paper confirmed the suitability of using these castor oil-based waterborne polyurethane-silica nanocomposites as new adhesive materials with high performance coatings materials. The experimental results reveal that the APTES and the hard segment content play a key role in controlling the structure and properties of the PU cast films based on castor oil-recycled polyols.  相似文献   

2.
The application of polyurethanes (PUs) on breathable waterproof fabric coatings requires a balance of water vapor permeability (WVP) and water resistance which can be achieved by tailoring hydrophilic and hydrophobic segments. PU prepolymers were prepared from isophorone diisocyanate, dimethylol butanoic acid, and a mixture of various ratios of amphiphilic PPG2050 (copolymer of ethylene oxide and propylene oxide with –OH end groups) and hydrophobic poly(tetramethylene ether glycol) (PTMEG). After neutralization with triethylamine, the prepolymers were chain-extended with ethylene diamine/1,4-butanediol (1:1 by molar). The WVP values of the fabric coatings prepared using various waterborne PUs were very similar (910–990 g/m2 × 24 h). When waterborne PUs prepared using a mixture of PPG2050 and PTMEG were employed for the textile coatings, the resulting PU-coated textiles exhibited excellent waterproof properties (>10,000 mm H2O). The textile coatings prepared from PPG2050/PTMEG-based waterborne PUs were significantly more waterproof than those prepared from poly(ethylene glycol) (PEG)/poly(propylene glycol) (PPG)/PTMEG-based waterborne PU. This is probably due to a more even distribution of hydrophobic segments in the PUs, even though the WVP values of the PEG/PPG/PTMEG-based PU coatings were considerably smaller than those of the PPG2050/PTMEG-based PU coatings.  相似文献   

3.
以环氧树脂E-51和蓖麻油为原料制备了环氧改性的水性聚氨酯分散体。试验结果表明:当环氧树脂用量为6%、蓖麻油用量为20%和n-NCO/n—OH为1.4时,所得涂膜具有优异的耐水性、硬度和抗划伤性,满足水性木器面漆的性能要求。  相似文献   

4.
The application of polyurethanes (PUs) on breathable waterproof fabric coatings requires a balance of water vapor permeability (WVP) and water resistance which can be achieved by tailoring hydrophilic and hydrophobic segments. PU prepolymers were prepared from isophorone diisocyanate, dimethylol butanoic acid, and a mixture of various ratios of amphiphilic PPG2050 (copolymer of ethylene oxide and propylene oxide with –OH end groups) and hydrophobic poly(tetramethylene ether glycol) (PTMEG). After neutralization with triethylamine, the prepolymers were chain-extended with ethylene diamine/1,4-butanediol (1:1 by molar). The WVP values of the fabric coatings prepared using various waterborne PUs were very similar (910–990 g/m2 × 24 h). When waterborne PUs prepared using a mixture of PPG2050 and PTMEG were employed for the textile coatings, the resulting PU-coated textiles exhibited excellent waterproof properties (>10,000 mm H2O). The textile coatings prepared from PPG2050/PTMEG-based waterborne PUs were significantly more waterproof than those prepared from poly(ethylene glycol) (PEG)/poly(propylene glycol) (PPG)/PTMEG-based waterborne PU. This is probably due to a more even distribution of hydrophobic segments in the PUs, even though the WVP values of the PEG/PPG/PTMEG-based PU coatings were considerably smaller than those of the PPG2050/PTMEG-based PU coatings.  相似文献   

5.
蓖麻油改性的水性聚氨酯涂料的制备及其防蚀性能   总被引:2,自引:0,他引:2  
以可再生的蓖麻油和环氧树脂改性水性聚氨酯,研究了涂膜的耐水性能等,改性后的水性聚氨酯吸水率下降仅为3%,耐水性好。对该树脂所制成的富锌防腐涂料进行了腐蚀电位和电化学阻抗谱(EIS)的测试分析,考察了富锌涂层在3%NaCl溶液中的电化学行为,结果表明耐水性的提高导致蓖麻油改性的水性聚氨酯富锌涂料耐蚀性的改进。  相似文献   

6.
A novel hybrid diol (HD) crosslinker has been synthesized with hydrolyzable –Si–OR groups from 3-amino propyl trimethoxy silane and 3-glycidoxy propyl trimethoxy silane. Its chemical structure was confirmed by Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy to introduce it as a crosslinker in the castor oil, a renewable resource, to develop functional organic inorganic hybrid coatings. A series of castor oil-based organic–inorganic hybrid materials were prepared from castor oil, isophorone diisocyanate, and the different weight percentages of synthesized HD. Dynamic mechanical thermal analysis, thermogravimetric analysis, differential scanning calorimetry, and the universal testing machine were employed to characterize the hybrid films. The measured properties were found to be strongly influenced by the weight ratio of HD to the castor oil-based polyurethanes. The glass transition temperatures (T g) for the cured hybrid films were found to be 26–72°C. Antibacterial activity, in vitro hydrolytic degradation, and swelling properties of the hybrid films have been studied. The cured hybrid films exhibited excellent antibacterial activity, which was enhanced with addition of the HD. The alkoxy silane-crosslinked castor oil-based coatings have shown better mechanical and viscoelastic properties in comparison to the control (uncrosslinked castor oil-based polyurethane-urea) coatings. The results showed that the weight percent of the HD is the main factor that controls the thermal, antimicrobial, mechanical, swelling, and degradation properties of these hybrid films.  相似文献   

7.
Segmented polyurethane ionomers find prominent applications in the biomedical field since they can combine the good mechanical and biostability properties of polyurethanes (PUs) with the strong hydrophilicity features of ionomers. In this work, PU ionomers were prepared from a carboxylated diol, poly(tetrahydrofuran) (soft phase) and a small library of diisocyanates (hard phase), either aliphatic or aromatic. The synthesized PUs were characterized to investigate the effect of ionic groups and the nature of diisocyanate upon the structure–property relationship. Results showed how the polymer hard/soft phase segregation was affected by both the concentration of ionic groups and the type of diisocyanate. Specifically, PUs obtained with aliphatic diisocyanates possessed a hard/soft phase segregation stronger than PUs with aromatic diisocyanates, as well as greater bulk and surface hydrophilicity. In contrast, a higher content of ionic groups per polymer repeat unit promoted phase mixing. The neutralization of polymer ionic groups with silver or zinc further increased the hard/soft phase segregation and provided polymers with antimicrobial properties. In particular, the Zinc/PU hybrid systems possessed activity only against the Gram-positive Staphylococcus epidermidis while Silver/PU systems were active also against the Gram-negative Pseudomonas aeruginosa. The herein-obtained polyurethanes could find promising applications as antimicrobial coatings for different kinds of surfaces including medical devices, fabric for wound dressings and other textiles.  相似文献   

8.
环氧改性蓖麻油基水性聚氨酯树脂的结构与性能   总被引:1,自引:0,他引:1  
用蓖麻油(CO)、聚四氢呋喃醚二醇(PTHF)、甲苯二异氰酸酯(TDI)、二羟甲基丙酸(DMPA)、环氧树脂(E—12)合成了水基聚氨酯树脂,去离子水乳化得到蓖麻油交联改性和环氧复合改性的水性聚氨酯乳液。通过拉伸、TG等测试手段表征了乳液的机械性能、热性能及耐化学品性能。结果显示:当蓖麻油的添加量为7.1%,环氧树脂含量为13.7%时,材料的机械性能达到最佳,环氧树脂的引入明显改善了材料的耐水性和耐温性,如耐水性达到120h无异常,耐沸水15min无变化。  相似文献   

9.
A new linear saturated terminal diisocyanate was synthesized from castor oil-derived undecylenic acid by thiol-ene coupling (TEC) and Curtius rearrangement. The structure of the diisocyanate was carefully examined using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), and 13C NMR. This diisocyanate was used as a starting material for the preparation of a fully bio-based waterborne polyurethane dispersion (BPUD) by reacting with castor oil and castor oil-based carboxylic acid-type hydrophilic chain extender, which was prepared from castor oil by using 3-mercaptopropionic acid via TEC. The thermal/mechanical properties of the formed BPUD film were characterized via differential scanning calorimetry, thermogravimetric analysis, tensile test, hardness test, and water resistance test. The fatty acid-derived diisocyanate and the castor oil-based hydrophilic chain extender were used to produce BPUD with favorable properties.  相似文献   

10.
Bamboo tar is a natural resource of aromatic polyol obtained from a residue of by setting or distilling crude bamboo vinegar. In this study, the two‐packed polyurethane (PU) coatings were prepared by blending bamboo tar and castor oil varying with different weight ratios and polymeric toluene diisocyanate (PTDI) was used as a hardener at the NCO/OH molar ratio of 1.0. Six kinds of PU coatings were formulated and the viscosity, pot‐life, drying time, mechanical properties (hardness, tensile strength, impact resistance, adhesion, and abrasion resistance), gel content, durability, lightfastness, FTIR, thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) were characterized. The results indicated that the bamboo tar containing PU film appearance is semitransparent yellow‐brown color and the wood texture could be kept after finishing. All PU films possessed excellent adhesion as well as durability. The increase in bamboo tar content led to shorten drying time of coatings and to increase in hardness, tensile strength, lightfastness, and thermal stability of films. From these results and due to a light smell flavor, it is suggested that the bamboo tar‐based PU coatings is suitable to be used as an exterior wood coatings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The presence of a hydroxyl group, in addition to an olefinic linkage, in the predominating fatty acid of castor oil gives this vegetable oil many unique and interesting properties. Castor oil consists largely of glycerides of ricinoleic acid or 12-hydroxy octadecenoic acid. The chemical reactions of castor oil, undecylenic acid, 12-hydroxylstearic acid, sebacic acid, and nylon 11, depict the uniqueness of this agricultural oil. By dehydration, castor oil is converted to a conjugated acid oil similar to tung or oiticica oil. The catalytic dehydration results in the formation of a new double bond in the fatty acid chain. The dehydrated castor oil imparts good flexibility, rapid dry, excellent color retention, and water resistance to protective coatings. The pyrolysis of castor oil cleaves the molecule to produce undecylenic acid and heptaldehyde. The pyrolysis of the methyl ester at 450–550 C results in the formation of methyl 10-undecylenate. Hydrolysis of the methyl ester gives 10-undecylenic acid. Hydrogen bromide is added to form 11-bromo undecanoic, which is ammoniated and condensed to form a nylon polymer. When castor oil is added slowly to an 80% caustic solution, the sodium ricinoleate formed splits to form sodium sebacate and capryl alcohol. Sebacic acid is condensed with hexamethylene diamine to form nylon 6,10. The commercial application of castor oil derivatives in urethanes, starch gel modifiers, medium chain triglycerides, and thixotropic additives is reviewed briefly. One of 12 papers presented in the symposium “Novel Uses of Agricultural Oils” at the AOCS Spring Meeting, New Orleans, April 1973.  相似文献   

12.
Interpenetrating polymer networks (IPNs) of castor oil-based polyurethanes and polystyrene were prepared by simultaneous polymerization. The liquid prepolyurethanes were formed by reacting the hydroxyl functionality of castor oil with isophorone diisocyanate using different stoichiometric NCO/OH ratios. These prepolyurethanes were mixed with styrene monomer and subsequently polymerized by free radical polymerization initiated by benzoyl peroxide in the presence of the crosslinker 1,4-divinyl benzene. The interpenetrating polymer networks. PU/PS IPNs, were obtained as tough and transparent films by the transfer moulding technique. These IPNs were characterized by the static mechanical properties (tensile strength, Young's modulus and % elongation), thermal properties and morphology. The dielectric relaxation properties (σ, E′, E″ and tanδ) of the IPNs at different temperatures were studied.  相似文献   

13.
A variety of vegetable oil-based, waterborne polyurethane dispersions have been successfully synthesized from different vegetable oil polyols exhibiting almost constant hydroxyl functionalities of 2.7 OH groups per molecule. The vegetable oil polyols, which have been prepared from vegetable oils with different fatty acid compositions (peanut, corn, soybean, and linseed oil), range in residual degree of unsaturation from 0.4 to 3.5 carbon–carbon double bonds per triglyceride molecule. The effects of residual unsaturation on the thermal and mechanical properties of the resulting polyurethane films have been investigated by dynamic mechanical analysis, differential scanning calorimetry, and thermal gravimetric analysis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) has been used to accurately determine the molecular weight and mass distribution of the vegetable oil polyols. Higher residual unsaturation results in polyurethane films with increased break strength, Young's modulus, and toughness. This work has isolated the effect of unsaturation on vegetable oil-based polyurethane films, which has been neglected in previous studies. The effect of different oxirane ring opening methods (methanol, butanol, acetic acid, and hydrochloric acid) on the properties of the coatings has also been examined.  相似文献   

14.
水性双组分聚氨酯涂料兼有溶剂型双组分聚氨酯涂料的高性能和水性涂料的低VOC(挥发性有机化合物)特点,成为当前涂料研究的热点和发展方向。以核壳结构的羟基丙烯酸乳液为主要成膜物质,以水性异氰酸酯为固化剂,制得水性双组分聚氨酯外墙罩光清漆,所得涂膜性能优异且VOC含量极低。  相似文献   

15.
TMPDCO对封端型水性聚氨酯的改性研究   总被引:1,自引:0,他引:1  
以三羟甲基丙烷和脱水蓖麻油酸为原料合成了三羟甲基丙烷单脱水蓖麻油酸酯(TMPD-CO),研究了TMPDCO用量对甲基丙烯酸羟乙酯封端的阴离子型水性聚氨酯胶膜的耐水、耐醇、耐热性能和力学性能的影响。结果表明,TMPDCO的加入,增加了水性聚氨酯的不饱和度,有利于交联成膜;当TMPDCO用量占预聚体总羟基的摩尔百分比为40%时,水性聚氨酯的耐水、耐热和耐醇性能较好,并且当预聚体R为5时,力学性能最佳。  相似文献   

16.
植物油改性水性聚氨酯涂料的研制   总被引:3,自引:0,他引:3  
采用气干性植物油与三羟甲基丙烷(TMP)醇解的产物,代替传统的聚酯聚醚多元醇与甲苯二异氰酸酯(TDI)和二羟甲基丙酸(DMPA)反应,然后用三乙胺中和,再用水稀释,制得自乳化的植物油改性水性聚氨酯(俗称氨酯油)乳液。用该水性氨酯油乳液制备了性能优良的水性聚氨酯木器涂料,并对影响乳液性能的多种因素进行了探讨。  相似文献   

17.
鲍艳  韩旆  刘锋  刘超  颜红侠  张文博 《精细化工》2024,41(4):840-847
为了探究双羟基染料不同引入方式对水性聚氨酯(WPU)乳液及其成膜性能的影响,采用异佛尔酮二异氰酸酯、聚四氢呋喃(PTMG)、2,2-二羟甲基丙酸和1,4-丁二醇(BDO)合成了WPU乳液。将酸性红87作为扩链剂部分替代BDO制备了有色化学共聚聚氨酯(ARWPUA-1~3)乳液;将酸性红87作为软段部分替代PTMG制备了有色化学共聚聚氨酯(ARWPUB-1~3)乳液;将酸性红87与WPU共混制备了WPU/AR。采用FTIR、1HNMR和UV-Vis对样品的结构进行了表征;考察了不同有色WPU的贮存稳定性、耐溶剂性、颜色特征值、耐干/湿摩擦色牢度以及力学性能,并对其进行了分子动力学模拟。结果表明,由n(酸性红87)∶n(BDO)=1∶4制备的ARWPUA-2具有优异的贮存稳定性;在不同溶剂中均不会发生溶解脱色现象;具有良好的耐干/湿摩擦色牢度和较高的力学性能,其拉伸强度22.6 MPa,断裂伸长率为810%。  相似文献   

18.
Environmentally friendly and lightweight silylated cellulose nanocrystal (SCNCs)/waterborne polyurethane (WPU) composite films that exhibit excellent mechanical properties and water resistance were prepared. The cellulose nanocrystals (CNCs) of the filamentous structure were surface-modified by γ-aminopropyltriethoxysilane (APTES) and then introduced into a castor oil-based aqueous polyurethane (WPU) matrix by in situ polymerization. The morphology and silylation degree of CNCs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier infrared transform spectroscopy at different APTES concentrations. The results showed that the surface of the nanocellulose crystal has the best silylation morphology and thermal stability with incorporation of 6 wt % APTES. The thermal stability, mechanical properties, surface morphology, and water resistance of the nanocomposites were investigated by TGA, tensile test, SEM and optical contact angle, water absorption test, and mechanical property test after immersed in water. It was found that the effective introduction of modified CNCs resulted in a significant increase in tensile strength at high levels, and the thermal stability and hydrophobicity of the material were improved simultaneously, reaching the percolation threshold at a 0.50 wt % SCNCs as determined theoretically. This study provided an approach to the design and development of surface-modified CNCs/vegetable oil-based polymer composites by using an appropriate concentration of silane coupling agent to modify CNCs and improve the compatibility between nanocellulose and vegetable oil-based polymer matrices. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48228.  相似文献   

19.
Castor oil is the only major natural vegetable oil that contains a hydroxyl group and so it is widely used in many chemical industries, especially in the production of polyurethanes. In this work, castor oil was interesterified with jatropha oil and the product was subsequently reacted with toluene diisocyanate to obtain urethane alkyd. The prepared urethane alkyd was characterized and its properties were determined and compared with those of the conventional (glycerol/jatropha oil) and commercial urethane alkyds. The castor oil/jatropha oil-based urethane alkyd had a lower molecular weight and viscosity, a slightly lower hardness and greatly longer drying time than the conventional and commercial urethane alkyds, but otherwise the film properties were broadly similar, including being very flexible, with an excellent adhesion and high impact resistance. In addition, they also exhibited excellent resistance to water and acid.  相似文献   

20.
Two different types of polyurethanes (PUs) were prepared with castor oil, ethylene glycol, isophorene diisocyanate and castor oil, and isophoren diisocyanate and poly‐(ethylene glycol) (400 or 600). PU films were prepared and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and gel permeation chromatography. We prepared transdermal patches by loading different amounts of drug, plasticizer, and penetration enhancer. In vitro drug permeability through the castor‐oil‐based aliphatic PU patches was examined with a Keshary–Chien diffusion cell. The effect of castor oil on the film‐forming properties and the effect of penetration enhancers on diffusion characteristics of indomethacin (IDM) drug through the castor‐oil‐based PU were investigated. Prolonged release of IDM was observed from the prepared PU patches. In vitro drug diffusion revealed that slow and prolonged release of IDM was achieved in the absence of penetration enhancers. The use of penetration enhancers showed a significant effect on drug diffusion. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 779–788, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号