首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Composites of polyamide 6 (PA 6), powdered synthetic graphite and pitch‐based carbon fiber were melt processed to explore the effect of the filler contents on the anisotropic properties of the resulting composites. Optical microscopy and mechanical properties were used to determine the dispersion of graphite and carbon fiber in the PA 6 matrix. The relationship between the structure and properties showed the anisotropic filler orientation along the three principal directions. Thermal expansion in the flow direction and transverse direction decreased as filler content increased for all composites, but the decrease in the flow direction was much more significant. This anisotropic orientation also influenced the thermal conductivity of the composites resulting in an increased in‐plane thermal conductivity up to 25 times that of pure PA 6. Thermography shows good agreement with the thermal conductivity results. © 2013 Society of Chemical Industry  相似文献   

2.
Polymer-carbon nanocomposites incorporate the exceptional properties of both the polymer matrices, such as low cost and simple processing, with the distinctive features of the carbon-based fillers, such as high electrical and thermal conductivities, and excellent mechanical properties. Various fillers like carbon black (CB), graphite, expanded graphite (EG), and carbon nanotubes (CNTs) are being used to produce materials with advanced properties. However, at high filler loading, these filler materials have some major challenges such as filler agglomeration. Recently, graphene has gained increased interest as an alternative filler to produce polymer nanocomposites with advanced characteristics. Thermosetting polymer composites with graphene fillers are being considered for multiple applications and are a subject of interest for researchers because of enhanced properties like excellent corrosion resistance and low density. This review outlines studies to improve the mechanical, electrical, and thermal properties of thermoset/graphene composites.  相似文献   

3.
以炭黑(CB)为导电填料,马来酸酐接枝聚丙烯(PP-g-MAH)为增韧剂,通过双螺杆挤出机和注射成型机制备了尼龙(PA)6/PP-g-MAH/CB复合材料,研究了PP-g-MAH含量对7.5%CB填充PA6力学性能、抗静电性能、热稳定性能和形貌的影响。结果表明,添加质量分数20%的PP-g-MAH可提高PA6/CB复合材料的拉伸强度、韧性、抗静电性能和热稳定性。PA6/PP-g-MAH/CB复合材料力学强度和热稳定性的提高源于PP-g-MAH产生的能量耗散以及CB,PP-g-MAH与PA6之间较好的界面粘附和PP-g-MAH均匀细化分散在PA6/CB中。PP-g-MAH改变了CB在共混物中的选择性分布,使PA6/CB的表面电阻率和体积电阻率分别下降5个和3个数量级。  相似文献   

4.
The effect of varied rubber tree seed shell flour (RSSF) filler loadings on processing torque, mechanical, thermal, water absorption, and morphological properties of polypropylene (PP) and high‐density polyethylene (HDPE) composites has been studied. The addition of RSSF in the composites increased the stabilization torque in both PP‐ and HDPE‐based composites. Tensile strength, elongation at break, flexural strength, and impact strength show significant reduction when higher loading of RSSF was incorporated, while tensile modulus and flexural modulus were improved. The phenomenon was noted for both matrices, PP and HDPE, but HDPE‐based composites showed clear effects on the reduction of the mechanical properties compared with RSSF‐filled PP. Scanning electron microscopy of tensile fracture specimens revealed the degree of dispersion of RSSF filler in the matrices. At higher filler loadings, agglomerations and poor dispersion of RSSF particles were spotted, which induce the debonding mechanism of the system. Thermogravimetric analysis thermograms showed that both PP‐ and HDPE‐based composite systems with higher RSSF content have higher thermal stability, initial degradation temperature, degradation temperature, and total weight loss. Water absorption ability of the composites increases as the filler loading increases for both matrices. J. VINYL ADDIT. TECHNOL., 22:91–99, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
Polyamide‐type composites with improved thermal conductivity are prepared by using polyamide 6(PA6)/polyamide 6,6 (PA66) 1:1 blend as the matrix and aluminum nitride (AlN) as the filler through melt compounding. Field emission scanning electron microscopy coupled with energy dispersive spectrometry (EDS) mapping of Al is used to investigate distribution of AlN. Differential scanning calorimeter is used to investigate the crystallization behavior of the composites. The thermal conductivity of PA6/PA66/AlN composite with 50 wt % AlN is 1.5 W m?1 K?1, 88% enhancement compared to those of single polymer based PA6/AlN or PA66/AlN composites. The reason for the improved thermal conductivity is the increased effective volume concentration of AlN in one (probably PA66) phase. The experimental data are fitted into Bruggeman and Agari–Uno model. Composites with similar thermal conductivity are also prepared using silicon carbide as the filler instead of AlN, showing that using PA6/PA66 1:1 blend as the matrix is a universal method to prepare thermally conductive composites with less filler loading. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45371.  相似文献   

6.
Composite materials based on an aliphatic copolyamide and a secondary polyethylene, as thermoplastic matrices, and wood chips as filler were obtained and characterized. The influence of different factors (polymeric matrix type, fractional composition and geometrical characteristics of wood filler, processing parameters and ratio polymer/wood) on the properties of polymer–wood composites (PWCs) was studied. It was demonstrated that the packing factor F has an essential influence on the properties of PWCs: increasing F values determines an improvement in mechanical properties of these materials. Mechanical properties, thermal behaviour, morphological and diffusion characteristics of the analyzed composites were evaluated through specific methods and reported herein. Morphological and DSC data confirmed the presence of strong interface interactions between polymer and wood. The diffusion characteristics of PWCs showed that the diffusion coefficient D essentially depends on filler content in composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1700–1710, 2006  相似文献   

7.
Hindered phenol (Irganox 1010) was combined with two kinds of secondary antioxidants [i.e., tris(2,4‐di‐tert‐butylphenyl) phosphite (Irgafos168) and tris(nonylphenyl) phosphite (TNPP)] to form antioxidant mixtures, and their influences on mechanical properties and thermo‐oxidative degradation of polyamide 6 (PA6) and halloysite nanotube (HNT) filled composites were investigated. The results showed that the antioxidant combinations provided an improvement in the oxidative induction time, decomposition temperature (Td), processability, and tensile properties of PA6. Irganox/TNPP (1:1) was found to exhibit the best thermal oxidative resistance. The study of heat ageing in the air oven at 130 °C showed that the stabilized composites with 5 wt % of HNT could retain 92% of strength without loss of modulus. The physical characteristics of antioxidants such as low volatility and possible interaction with filler in the composites played a crucial role in stabilizing efficiency during heat ageing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45360.  相似文献   

8.
The aim of this work was the preparation of novel composites of poly(ethylene terephthalate) (PET) and nano‐hybrid systems based on clay used as catalyst for the growth of multi walled carbon nanotubes (Clay‐CNTs), through catalytic chemical vapor deposition (CCVD). The carbon content into the hybrid filler was 58.1 wt %. Composites with 1.0, 1.5, 2.0, 3.0 wt % of Clay–CNTs were obtained by melt compounding and processed using a microinjection molding press. Unfilled PET was processed in the same composites conditions. Structural characterization and physical properties (thermal, degradation, mechanical, and electrical) were analyzed and correlated to the hybrid filler loading, and carbon nanotubes amount. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40441.  相似文献   

9.
In this study, it was aimed to investigate the mechanical, thermal, and morphological properties of PA6 hybrid composites containing talc and wollastonite. Talc and wollastonite filled single and hybrid composites were prepared with melt compounding in a twin screw extruder. The filler content was 40% by weight and the wollastonite/talc ratio was 40/0, 30/10, 20/20, 10/30, and 40/0. The melt flow rate measurements showed that incorporation of fillers into the polyamide 6 (PA6) resulted in an increment in melt viscosity of composites. The presence of a homogeneous dispersion of fillers in the matrix was obtained from morphological analysis. It was revealed from the mechanical tests that in most cases, mechanical properties of 20/20 hybrid composites were significantly higher than that of the single and the other hybrid composites. Heat deflection temperature of the composite was markedly improved by the addition of fillers. Differential scanning calorimeter analysis showed that talc and wollastonite acted as a nucleating agent for PA6. POLYM. COMPOS., 36:739–746, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
The effects of boron nitride (BN) and aluminum nitride fillers on polyamide 6 (PA6) hybrid polymer composites were investigated. In particular, the thermal and electrical conductivity, thermal transition, thermal degradation, mechanical and morphological properties and chemical bonds characteristic of the materials with crystal structure of BN and aluminum nitride (AlN) filled PA6 prepared at different concentrations were characterized. Thermal conductivity of hybrid systems revealed a 1.6-fold gain compared to neat PA6. The highest thermal conductivity value was obtained for the composite containing 50 vol% additives (1.040 W/m K). A slight improvement in electrical conductive properties of composites appears and the highest value was obtained for the 50 vol% filled composite with only an increase by 3%. The microstructure of these composites revealed a homogeneous dispersion of AlN and BN additives in PA6 matrix. For all composites, one visible melting peak around 220°C related to the α-form crystals of PA6 was detected in correlation with the X-ray diffraction results. An improved thermal stability was obtained for 10 vol% AlN/BN filled PA6 composite (from 405.41°C to 409.68°C). The tensile strength results of all composites were found to be approximately 22% lower than pure PA6.  相似文献   

11.
The objective of this work was to elucidate the influence of shear rates on the properties of polyamide 6/multiwalled carbon nanotube (PA6/CNT) composites which was realized by adopting different types of processing methods that feature different orders of magnitude in shear rates, such as compression molding (CM, ~0 s−1), conventional injection molding (CIM, ~102 s−1) and microinjection molding (μIM, ~105 s−1). Electrical conductivity (σ) results indicated that the prevailing high shearing conditions in injection molding was unfavorable for the formation of intact filler network, thereby resulting in a much lower σ than CM counterparts. Moreover, the σ of PA6/CNT microparts was higher than that of CIM macroparts when the filler content was less than 5 wt%, otherwise the σ of CIM macroparts prevailed over that of μIM counterparts. A better filler distribution was observed when PA6/CNT composites were processed under higher shearing conditions, as corroborated by SEM. In addition, CNTs were preferentially aligned along flow direction and a higher degree of CNT orientation was expected with increasing shear rates, as confirmed by Raman spectral analysis. The tensile strength of injection molded PA6/CNT samples increased with increasing filler concentrations, and the more preferential orientation and better distribution of CNT were considered to be the contributing factors. The comparative study of the properties of PA6/CNT composites that processed using different methods was important for their practical applications in industrial sectors.  相似文献   

12.
通过熔融共混法制备了聚对苯二甲酸乙二醇酯 (PET)/聚酰胺6 (PA6)/Surlyn与PET/均苯四甲酸酐 (PMDA)/Surlyn共混材料,研究了Surlyn对共混体系的形貌以及共混体系中PET流变性能与结晶性能的影响。并使用扫描电子显微镜 观察了PET/PA6/Surlyn共混物的低温淬断断面,使用旋转流变仪与差示扫描量热仪研究共混物的流变性能与结晶性能。结果表明,Surlyn可以提高PET/PA6/Surlyn共混体系的熔体强度,促进共混体系中PET的结晶,使PET结晶温度提高10 ℃,过冷度与结晶半高宽显著下降,明显改善PET的流变性能与结晶性能,而对于PMDA扩链后的PET,Surlyn对其结晶性能的影响影响较小;Surlyn可以降低PA6分散相的粒径,提高PET与PA6两相之间的相容性。  相似文献   

13.
A composite of boehmite alumina nanoparticles and a PP/PA12 blend is prepared. WAXD and SEM suggest that a low filler loading enhances the coalescence of PA12, whereas a higher loading reverses the situation. DSC, DMA and TGA reveal that the final properties of the blend composites such as crystallization temperatures, flexural storage moduli, or thermal degradation temperatures improve with increasing nanoparticle loading. The data are compared with the neat polymers and the compatibilized blend, and the results show that the compatibility increases only at high nanoparticle loading, and most of the thermal properties improve with increasing nanoparticle content in the blends. The presence of interfacial interactions between the polymer matrices and the filler was confirmed via FTIR.

  相似文献   


14.
张朝  施勇晖  戴干策 《化工学报》2009,60(2):476-482
通过对三相复合材料PP/GF/PA66、PP/GF/PET、PP/GB/PA66、PP/GB/PET以及PP/PA66/PET的力学性能和微观形貌的比较分析,研究了三相复合材料的界面吸附现象。实验结果表明,高分子的极性在多相体系的界面形成过程起着非常重要的作用。在熔融加工时,极性高分子能优先吸附包覆在极性无机填料或极性高分子表面;三相体系中的极性优先吸附包覆作用改善了无机填料和高分子基体之间的界面结合,使材料的力学性能优于不存在优先吸附作用的三相体系的力学性能。此外,通过比较分析复合材料组分之间的界面张力,从界面能的角度解释了多相复合材料中的优先吸附包覆现象。  相似文献   

15.
The effects of filler particle size of poly(vinyl chloride)/chicken eggshell powder (PVC/ESP) composites on the processing, tensile properties, morphology and thermal degradation were investigated. The mixing of composites was done using Rheomix internal mixer. The processing torque of PVC/ESP composite at a particle of 0.2 μm exhibits lower processing torque compared to that at a particle size of 7 μm due to the dispersive resistance from larger ESP filler particles. Good interfacial adhesion exists between the filler and matrix in composites prepared via a filler particle size of 0.2 μm, which has improved the tensile strength and modulus of PVC/ESP composite compared to a filler particle size of 7 μm as justified from FESEM images on the tensile fracture surface of the composites. Thermogravimetric analysis results show that the filler particle size of 0.2 μm composite exhibits higher thermal stability compared to the filler particle size of 7 μm composite.  相似文献   

16.
用弹性体和CaCO3复合改性POM。采用TPU为增韧剂,CaCO3为增强剂,研究了加工方法、组成比、填料用量、粒径及分散形态等因素对复合材料性能尤其是冲击韧性的影响。结果表明,两步法制备复合材料的冲击韧性大大高于一步法;且纳米级CaCO3填充复合材料的综合性能优于其它粒径大小的填料;适量的弹性体及无机纳米填料的加入利于获得较好的增韧效果,当弹性体用量约为10%,CaCO3用量为3%时,与纯POM相比,冲击强度提高了3倍,弯曲模量与纯POM接近。  相似文献   

17.
以Al2O3、MgO和BN三种无机填料作为尼龙6(PA6)的导热填料,研究填料的种类、填充量、粒径大小和粒径配比等对复合材料热导率的影响。结果表明:PA6基复合材料的热导率随导热填料填充量的增加而增大,随导热系数大的填料填充量的增加增大较快;导热系数大的填料的粒径对复合材料的导热系数的影响比较明显;导热系数大的填料,不同粒径的复配可以显著提高复合材料的导热系。  相似文献   

18.
PA6/PC/POE/HDI复合物的性能研究   总被引:1,自引:1,他引:0  
以尼龙6为主要原料,在聚碳酸酯(PC)和聚烯烃弹性体(POE)复合增韧的基础上,加入扩链剂(HDI),经反应挤出制备了具有超韧性的新型尼龙6工程塑料。探讨了不同HDI用量对复合物力学性能的影响,并对相关热性能和流变性能做了比较研究。结果发现,HDI的加入能够显著提高PA6和PC之间的相容性,同时复合物的黏度显著提高,结晶度有所降低。  相似文献   

19.
研究了导电填料含量和处理方式对PA6复合材料性能的影响,结果表明,随着导电填料含量的增加,其表面电阻不断降低,拉伸和弯曲强度不断增大;阻燃性能降低。同时,碳纳米管母料较纯碳纳米管对PA6的综合性能有更好的改善效果。  相似文献   

20.
Untreated kenaf (KNF) and eco-friendly coupling agent (EFCA)-treated kenaf were used as filler to prepare natural fiber-reinforced polymer composites (NFPCs) using linear low-density polyethylene (LLDPE) and poly(vinyl alcohol) (PVOH) as polymer matrices. The composites containing various loadings of untreated and EFCA-treated KNF (0, 10, 20, and 40 phr) were melt-blended in an internal mixer. The effect of treatment on the behavior of processing torque, mechanical properties, morphology, functional groups, water absorption, and thermal stability of KNF/LLDPE/PVOH composites were investigated. The results revealed that EFCA-treated KNF composites exhibited higher equilibrium torque, indicating that the viscosity of molten composites increased in the presence of EFCA. The tensile strength and tensile modulus of KNF/LLDPE/PVOH composites were improved with the addition of EFCA-treated KNF attributed to the enhancement of the interfacial adhesion between KNF and LLDPE/PVOH matrices, as confirmed by field-emission scanning electron microscopy. Fourier transform infrared spectroscopy indicated the presence of ester bond in EFCA-treated KNF composites. Furthermore, EFCA-treated KNF composites possessed a lower water absorption and greater thermal stability as compared to untreated KNF composites. Therefore, EFCA could be suggested as an effective coupling agent to enhance the performance of KNF/LLDPE/PVOH composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号