首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
杨瑛  张衍林  郑文轩 《太阳能学报》2015,36(12):3090-3095
对未预处理的棉秆进行烟气回烧间接加热式热解炭化实验研究。在单因素试验的基础上,采用BoxBenhnken试验设计和响应面分析法建立二次回归数学模型,得到优化工艺参数。研究表明,炭化原料与燃烧原料质量比2∶1、热解温度为425℃、升温速率为7.5℃/min和保温时间10 h,得炭率最高,且炭中的固定碳含量最高。在棉秆热解过程中,随原料比和反应温度的增加,热解固体产物质量不断减少,并对炭产物的性质进行分析研究。  相似文献   

2.
温度对生物质热解产物有机结构的影响   总被引:1,自引:0,他引:1  
在管式炉上研究了生物质在不同温度下的热解过程,采用傅立叶红外光谱仪研究了热解温度对稻草热解固体产物半焦和液体产物焦油的有机结构变化的影响,用色质联用仪(GC/MS)分析了焦油的主要成分随温度的变化。研究表明,生物质的热解主要集中在200~600℃,高温有利于气体产物的析出,半焦的量及其所含的有机官能团(C=O,C=C,C-H,C-O和OH等)随热解温度的升高快速减少;焦油的量随温度的升高先增大后减小,在500℃时达到最大值,焦油中官能团的种类较稳定,但是吸收峰强度随温度的升高呈减弱的趋势。  相似文献   

3.
温度对生物质固定床热解影响的研究   总被引:2,自引:1,他引:2  
在固定床上研究不同温度下生物质的热解过程,采用微型气相色谱、傅立叶红外光谱仪、比表面积和孔径分析仪等研究了热解温度对棕榈壳热解气体产物的释放特性和固体残余物生物质炭的物化特性及生物质的热解机理。实验发现生物质的热解主要集中在400~700℃,高温有利于气体产物的析出,生物质炭的量及其所含的有机官能团(C=0,C-C,C-H,C-O和OH等)随热解温度的升高快速减少。在600℃时固体生物质炭有较高的比表面积和小的孔径,表面孔结构较均匀。  相似文献   

4.
以竹屑为原料,选择250~950℃温度范围,在小型固定床反应器上探究竹材热解过程及产物特征。研究发现:随着热解温度的升高,固体焦炭产率减小,气体产率规律与之相反,液体产率先增后减,且在450℃时达到最大(52.28%)。固体焦炭中化学官能团的种类随温度的升高逐渐减少,含量随之减小,650℃之后除苯环结构外,基本无其他官能团,说明竹屑热解主要发生在650℃之前。在较低温度下,热解油中以呋喃类、醛酮类、酚类等含氧化合物为主,气体产物中主要以CO、CO_2为主,当温度超过750℃后,热解油以萘、苊等多环芳烃为主要含量,由于挥发分的二次裂解加剧,使CO和H_2体积分数增大,CH_4比例随温度变化缓慢。  相似文献   

5.
利用自行设计的固定床热裂解试验系统,在不同压力条件下,研究了纤维素的热解行为,在常压下分别考察热解温度、N2流量对热解产物的影响。研究结果表明,热解温度为450℃时,可得到较高收率的液体产物,并且液体产物的收率随着N2流量的增加而降低。当压力降低时,在450℃热解温度下液体产物的收率最高,为58.6%,比常压热解提高12.3%,生物油中水分含量随着热解温度的升高而升高。试验对在不同真空度下热解得到的液体产物进行了元素分析。  相似文献   

6.
玉米秸和稻壳热解产物的分布规律   总被引:2,自引:0,他引:2  
研究了玉米秸和稻壳热解产物在不同反应温度和停留时间下的分布规律.试验结果表明,400℃时热解产物中液体质量分数接近50%;随着反应温度升高,大分子的碳氢化合物逐步裂解,气态产物逐渐增多,800℃时气体产物质量分数超过了55%.反应温度对热解产物的分布具有显著影响,而停留时间影响较小.随着反应温度升高,H2含量明显增加,CO和CO2含量明显降低,CH4含量受温度的影响较小.当反应温度在400~500℃时,热解气体的低位热值在11~15 MJ/m3;反应温度超过500℃时,气体热值在15~16.5 MJ/m3.  相似文献   

7.
生物质玉米芯热解动力学实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以玉米芯为对象,利用热重-质谱联用技术,以高纯氩气为载气对其进行了详细的热重分析研究。通过对10℃/min和30℃/min升温速率及其不同温度下的失重曲线分析,发现玉米芯的主要失重温度区间为200~400℃,峰值温度为328~345℃。随着升温速率的提高,玉米芯热解的初始温度升高,热解向高温侧移动。同时通过质谱分析获得了温度和升温速率对热解气化产物的影响规律。在此基础上建立了热解动力学模型,并根据实验数据对模型进行了求解,结果表明玉米芯热解在低温段属一级反应而在高温段属三级反应。  相似文献   

8.
通过热重分析手段研究了杜氏盐藻在室温至900℃下的热解行为和特性,采用高纯氮气作保护气,升温速率分别为5℃/min、10℃/min、20℃/min和40℃/min.TG、DTG曲线的分析表明,热解过程随温度升高经历3个不同阶段.此外,随着升温速率增大,热解的初始温度和峰值温度均增大,且总失重增加.采用等转化速率法和主曲线法对盐藻热解过程进行动力学分析.结果表明,表观热解反应遵循单一动力学机理模型,反应动力学过程为简单级数反应机理模型Fn.求得热解反应表观平均活化能Ea为146.3 kJ/mol,指前因子A为4.28×1013s-1,指数n为2.4.  相似文献   

9.
生物质在流化床中热裂解的试验研究   总被引:3,自引:0,他引:3  
以稻壳为原料,在自制的小型流化床上研究了生物质快速热解反应温度对生物油产率的影响.结果表明:在450℃、500℃、550℃和600℃4种热裂解温度中,500℃时平均产油率最高为52.87%.对热解产物进行分析发现:生物油是1种复杂的舍氧有机化合物和水组成的混合物,几乎包含了所有化学类别的有机物;气体产物中主要以CO、CO2、CH4和C2-C4为主,CO、C2-C4和CH4的浓度随着温度的升高而上升;热解焦样则随温度的升高,其表面形态出现断裂破碎.  相似文献   

10.
马培勇  虞浸  蒋峰 《太阳能学报》2016,37(3):546-552
选取棉花秸秆成型颗粒为炭化原料,在自制的固定床炭化实验平台上,采用正交实验方法研究升温速率、炭化终温、保温时间和载气流量对其热解炭化性能的影响。用多指标综合平衡法对热解炭进行综合分析评价,结果表明:炭化终温是主要的影响因素。随着炭化终温的升高,成型炭的挥发分含量逐渐减少、灰分含量先略有降低后持续增加、固定碳含量与发热量先增大后减小、成型炭产率逐渐减小。实验参数范围内炭化的最优工艺方案为:升温速率4℃/min、炭化最终温度600℃、保温时间75 min、载气流量50 mL/min。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

19.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

20.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号