首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite [MnO2/P(An-co-oAs)] was successfully synthesized by a delamination/reassembling process using P(An-co-oAs) ionomer and layered manganese oxide in aqueous solution. This nanocomposite obtained was then characterized by Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), electron microscopy (SEM), and thermogravimetric (TG) analysis. X-ray diffraction and electron microscope analysis showed that the MnO2/P(An-co-oAs) nanocomposite had a lamellar structure with increasing interlayer spacing. The MnO2/P(An-co-oAs) nanocomposite exhibited substantially improved conductivity, which was near 100 times greater than that of its pristine MnO2 (3.5 × 10−7 S cm−1). The specific capacitance of the MnO2/P(An-co-oAs) nanocomposite reached 262 F g−1 in 1 M Na2SO4 at a current density of 1 A g−1, which was significantly higher than that of either of its two pristine materials [MnO2 (182 F g−1) or P(An-co-oAs) (127 F g−1)] owing to the synergic effect between the two pristine components. The fabrication mechanism of the nanocomposite was also proposed and discussed in this paper.  相似文献   

2.
Nanostructured MnO2 was synthesized by co-precipitation in the presence of Pluronic P123 surfactant and characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM) and transmission electron microscope (TEM). The sample without surfactant was spherical with particle size on the submicron scale, whereas P123-assisted samples were all loose clew shapes, consisting of MnO2 nanowires, 8-20 nm in diameter and 200-400 nm in length. The electrochemical performances of the as-prepared MnO2 as the electrode materials for supercapacitors were evaluated by cyclic voltammetry and galvanostatic charge-discharge measurements in a solution of 1 M Na2SO4. The sample without surfactant exhibited a relatively low specific capacitance of 77 F g−1, whereas the nanostructured MnO2 prepared with 0.02% (wt%) P123 exhibited excellent pseudocapacitive behavior, with a maximum specific capacitance of 176 F g−1.  相似文献   

3.
We report the synthesis of a new composite electrode based on nanosized-manganese oxide and carbon nanotubes (CNTs) by electrophoretic deposition of CNTs on a stainless steel (SS) substrate followed by direct spontaneous reduction of MnO4 ions to MnO2 to form the multi-scaled SS-CNT-MnO2 electrode. The resulting material was characterized by scanning electron microscopy, energy dispersive X-ray analysis, cyclic voltammetry and galvanostatic charge-discharge in a 0.65 M K2SO4 aqueous solution. The binderless SS-CNT-MnO2 nanocomposite electrode shows a very high specific capacitance of 869 F/g of CNT-MnO2 and good stability during long galvanostatic charge-discharge cycling. To the best of our knowledge, this is one of the highest capacitance for manganese oxide electrode ever reported. In addition to its applicability in electrochemical capacitors, this methodology could be extended to develop other high performance nanocomposite material electrodes based on carbon nanotubes and metal oxide for the future generation of electrochemical power sources.  相似文献   

4.
Nanowire-structured MnO2 active materials were prepared by a chemical precipitation method and their supercapacitive properties for use in the electrodes of supercapacitors were investigated by means of cyclic voltammetry in an aqueous gel electrolytes consisting of 1 M Na2SO4 and fumed silica (SiO2). The MnO2 electrode showed a maximum specific capacitance of 151 F g−1 after 1000 cycles at 100 mV s−1 when using the gel electrolyte containing 3 wt.% of SiO2, which is higher than 121 F g−1 obtained when using the 1 M Na2SO4 liquid electrolyte alone.  相似文献   

5.
Nanostructured manganese dioxide (MnO2) materials were synthesized via a novel room-temperature solid-reaction route starting with Mn(OAc)2·4H2O and (NH4)2C2O4·H2O raw materials. In brief, the various MnO2 materials were obtained by air-calcination (oxidation decomposition) of the MnC2O4 precursor at different temperatures followed by acid-treatment in 2 M H2SO4 solution. The influence of calcination temperature on the structural characteristics and capacitive properties in 1 M LiOH electrolyte of the MnO2 materials were investigated by X-ray diffraction (XRD), infrared spectrum (IR), transmission electron microscope (TEM) and Brunauer-Emmett-Teller (BET) surface area analysis, cyclic voltammetry, ac impedance and galvanostatic charge/discharge electrochemical methods. Experimental results showed that calcination temperature has a significant influence on the textural and capacitive characteristics of the products. The MnO2 material obtained at the calcination temperature of 300 °C followed by acid-treatment belongs to nano-scale column-like (or needle-like) γ,α-type MnO2 mischcrystals. While, the MnO2 materials obtained at the calcination temperatures of 400, 500, and 600 °C followed by acid-treatment, respectively, belong to γ-type MnO2 with the morphology of aggregates of crystallites. The γ,α-MnO2 derived from calcination temperature of 300 °C exhibited a initial specific capacitance lower than that of the γ-MnO2 derived from the elevated temperatures, but presented a better high-rate charge/discharge cyclability.  相似文献   

6.
Copolymerization of aniline and p-aminophenol in aqueous sulfuric acid solutions was electrochemically performed using cyclic voltammetry on platinum electrodes. The monomer concentration ratio can strongly affect the copolymerization rate and electrochemical property of the copolymer. The optimum conditions for the copolymerization are that the potential sweep covers the −0.20 to 0.95 V (vs. SCE) potential range, and that a solution contains 0.18 M aniline, 0.02 M p-aminophenol and 0.50 M H2SO4. A resulting copolymer synthesized under the optimum conditions has a good electrochemical activity in 0.50 M solutions of Na2SO4 with pH ≤ 10.0. IR and XPS spectra indicate that -OH groups and SO42− ions are contained in the resulting copolymer. The SEM images reveal that the microstructure of the copolymer depends on the monomer concentration ratio during the electrolysis.  相似文献   

7.
Poor crystallined α-MnO2 grown on multi-walled carbon nanotubes (MWCNTs) by reducing KMnO4 in ethanol are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Telle (BET) surface area measurement, which indicate that MWCNTs are wrapped up by poor crystalline MnO2 and BET areas of the composites maintain the same level of 200 m2 g−1 as the content of MWCNTs in the range of 0-30%. The electrochemical performances of the MnO2/MWCNTs composites as electrode materials for supercapacitor are evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge measurement in 1 M Na2SO4 solution. At a scan rate of 5 mV s−1, rectangular shapes could only be observed for the composites with higher MWCNTs contents. The effect of additional conductive agent KS6 on the electrochemical behavior of the composites is also studied. With a fixed carbon content of 25% (MWCNTs included), MnO2 with 20% MWCNTs and 5% KS6 has the highest specific capacitance, excellent cyclability and best rate capability, which gives the specific capacitance of 179 F g−1 at a scan rate of 5 mV s−1, and remains 114.6 F g−1 at 100 mV s−1.  相似文献   

8.
Commercially available low cost exfoliated graphite (EG, nominal diameter 130 μm) was used as a conductive substrate for electrochemical capacitor of hydrated Mn(IV) oxide, MnO2·nH2O. The MnO2·nH2O-EG composites were prepared by addition of EG to potassium permanganate solution, followed by 1 h stirring and then slow addition of manganese(II) acetate solution. By this procedure submicrometer or smaller sized MnO2·nH2O particles having mesopores of 6-12 nm in diameter were formed on the graphite sheets of EG. Although EG alone showed only about 2 F g−1, the composites showed good rectangular cyclic voltammograms at 2-20 mV s−1 in 1 mol L−1 Na2SO4. The capacitance per net amount of MnO2 increased proportionally with EG content, that is, utilization ratio of MnO2 increased with EG content. The composites of MnO2·nH2O and smaller diameter of EG (nominal diameter 45 μm) or artificial graphite powder (average diameter 3.7 μm) showed fairly good performance at 2 mV s−1, but with increasing potential scan rate the rectangular shape was distorted and capacitance decreased drastically. The results implies that sheet-like structure is more effective than small particles as conductive materials, when the formation procedure of composite is the same. Large sized EG may be a promising conductive material for electrochemical capacitors.  相似文献   

9.
In this work we have explored the electrochemical properties of two lithiated iron oxide powders for supercapacitor purposes. These samples mainly consisted of α-LiFeO2 in nanosized or micrometric form. Electrolyte was an aqueous 0.5 M Li2SO4 solution and voltage range studied was between 0 and −0.7 V vs. a Ag/AgCl reference electrode. As expected, electrochemical performance was dependent on the particle size. When electrolyte was deaerated a stable capacitance of ≈50 F g−1 is provided by the nanosized sample for several hundred cycles. Other sulfate based salts (Na2SO4, K2SO4, Cs2SO4) were investigated as electrolytes but only Li2SO4 leads to a stable capacitance upon cycling, probably due to lithium intercalation. An hybrid cell consisting of this sample and MnO2 as negative and positive electrodes, respectively, delivered 0.3 F cm−2 (10 F g−1). Although these values are lower than reported for other aqueous hybrid cell, α-LiFeO2/MnO2 asymmetric capacitor is interesting from both, an economic and an environmental point of view.  相似文献   

10.
Symmetrical supercapacitors and their serially connected two-cell stacks via a bipolar electrode were constructed with nanocomposites of manganese oxides and carbon nanotubes (MnOx/CNTs) as the electrode materials. Nanocomposites with different contents of MnOx were synthesised through the redox reaction between KMnO4 and CNTs in aqueous solutions. The nanocomposites were characterised by scanning and transmission electron microscopy, BET nitrogen adsorption and X-ray diffraction before being examined in a three-electrode cell with a novel trenched graphite disc electrode by electrochemical means, including cyclic voltammetry, galvanostatic charging-discharging, and electrochemical impedance spectroscopy. The nanocomposites demonstrated capacitive behaviour in the potential range of 0-0.85 V (vs Ag/AgCl) in aqueous KCl electrolytes with less than 9% capacitance decrease after 9000 charging-discharging cycles. Symmetrical supercapacitors of identical positive and negative MnOx/CNTs electrodes showed capacitive performance in good agreement with the individual electrodes (e.g. 0.90 V, 0.53 F, 1.3 cm2). The bipolarly connected two-cell stacks of the symmetrical cells exhibited characteristics in accordance with expectation, including a doubled stack voltage and reduced internal resistance per cell.  相似文献   

11.
A ternary composite of CNT/polypyrrole/hydrous MnO2 is prepared by in situ chemical method and its electrochemical performance is evaluated by using cyclic voltammetry (CV), impedance measurement and constant-current charge/discharge cycling techniques. For comparative purpose, binary composites such as CNT/hydrous MnO2 and polypyrrole/hydrous MnO2 are prepared and also investigated for their physical and electrochemical performances. The specific capacitance (SC) values of the ternary composite, CNT/hydrous MnO2 and polypyrrole/hydrous MnO2 binary composites estimated by CV technique in 1.0 M Na2SO4 electrolyte are 281, 150 and 35 F g−1 at 20 mV s−1 and 209, 75 and 7 F g−1 at 200 mV s−1, respectively. The electrochemical stability of ternary composite electrode is investigated by switching the electrode back and forth for 10,000 times between 0.1 and 0.9 V versus Ag/AgCl at 100 mV s−1. The electrode exhibits good cycling stability, retaining up to 88% of its initial charge at 10,000th cycle. A full cell assembled with the ternary composite electrodes shows a SC value of 149 F g−1 at a current loading of 1.0 mA cm−2 during initial cycling, which decreased drastically to a value of 35 F g−1 at 2000th cycle. Analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmet-Teller (BET) surface area measurement and inductively coupled plasma-atomic emission spectrometry (ICP-AES) are also used to characterize the composite materials.  相似文献   

12.
Manganese dioxide/multiwalled carbon nanotubes (MnO2/MWCNTs) were synthesized by chemically depositing MnO2 onto the surface of MWCNTs wrapped with poly(sodium-p-styrenesulfonate). Then, polyaniline (PANI) with good supercapacitive performance was further coated onto the MnO2/MWCNTs composite to form PANI/MnO2/MWCNTs organic-inorganic hybrid nanoarchitecture. Electrochemical performance of the hybrid in Na2SO4-H2SO4 mixed acidic electrolytes was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CP) in detail. Comparative electrochemical tests revealed that the hybrid nanoarchitecture could operate in the acidic medium due to the protective modification of PANI coating layer onto the MnO2/MWCNTs composite, and that its electrochemical behavior was greatly dependent upon the concentration of protons in the acidic electrolytes. Here, PANI not only served as a physical barrier to restrain the underlying MnO2/MWCNTs composite from reductive-dissolution process so as to make the novel ternary hybrid material work in acidic medium to enhance the utilization of manganese oxide as much as possible, but also was another electroactive material for energy storage in the acidic mixed electrolytes. It was due to the existence of PNAI layer that an even larger specific capacitance (SC) of 384 F g−1 and a much better SC retention of 79.9% over 1000 continuous charge/discharge cycles than those for the MnO2/MWCNTs nanocomposite were delivered for the hybrid in the optimum 0.5 M Na2SO4-0.5 M H2SO4 mixed acidic electrolyte.  相似文献   

13.
Mixtures of IrO2+MnO2 (30:70 mol%) have been electrochemically studied by cyclic voltammetry (CV) in acid solution. The crystalline structure, morphology and the electrochemical properties of the electrodes have been studied as a function of the annealing temperature. X-ray diffraction analysis (XRD), show absence of Mn2O3 phase formation and suggest the possible of formation of a solid solution of IrO2 and MnO2 mainly between 400 and 450 °C. The voltammetric behavior depends on the potential cycle number and annealing temperature employed in the preparation of the oxide layer. A good potential window in aqueous H2SO4 and high electroactive area are obtained due to the contribution of Ir redox transitions. Energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM) analysis suggest an enrichment of the Ir content on the surface at the cost of the dissolution of the manganese present in the film when the electrode is submitted to the continuous potential scan. The electrodes have been found to perform well in electrochemical capacitor applications with a specific capacitance close to 550 F g−1. The large capacitance exhibited by this system arises from a combination of the double-layer capacitance and pseudocapacitance associated with surface redox-type reactions.  相似文献   

14.
Hydrous manganese oxide was deposited on graphite substrates at anodic potentials of 0.5-0.95 V versus saturated calomel electrode (SCE) in 0.25 M Mn(CH3COO)2 solution at 25 °C. Morphology of manganese oxide prepared was examined by scanning electron microscopy (SEM). Manganese oxide deposited at various anodic potentials was evaluated by cyclic voltammetry with various potential scan rates in different electrolytes. Results indicated that the pseudocapacitive behaviors of manganese oxide were excellent both in 2 M KCl and 2 M (NH4)2SO4 solutions at room temperature. Manganese oxide deposited at 0.5 V versus SCE showed better capacitive behaviors, the specific capacitances were 275 F/g in 2 M KCl solution and 310 F/g in 2 M (NH4)2SO4 solution, respectively. Besides, better electrochemical reversibility could be obtained in 2 M KCl solution.  相似文献   

15.
The α- and γ-phases of MnO2 prepared by electrolysis of MnSO4 and MxSO4 (where M = Li+, Na+, K+, Rb+, Cs+ or Mg2+) in aqueous solutions at various pH and voltage Ev values under ambient conditions have been systematically studied. The structures of powdery MnO2 produced are found to depend on the radius of the Mz+ counter cation in addition to the pH and Ev conditions. In order to achieve the α-phase for MnO2 formation under neutral pH condition, the radius of counter cation must be equal to or greater than 1.41 Å, the size of the K+ cation. The relative concentration ratio of [MnO4]transient/[Mn2+], which is related to the pH-Ev conditions, also affects the structure of MnO2 produced with counter ions smaller than K+. For samples prepared in acidified solution with the counter ions of Li+, Na+ or Mg2+ at 2.2 V, the electrolysis products display the γ-MnO2 phase while those prepared at 2.8 V electrolysis produce a mixture of γ-MnO2 and α-MnO2 phases. Single phase of α-MnO2 is identified in the 5 V electrolysis products. Furthermore, the valence state of manganese was found to decrease as the applied voltage was reduced from 5.0 to 2.2 V. This implies that the lower [MnO4]transient/[Mn2+] ratio or the less oxidative condition is responsible for the non-stoichiometric MnO2 structure with oxygen deficiency.  相似文献   

16.
Manganese oxide was synthesized and dispersed on carbon nanotube (CNT) matrix by thermally decomposing manganese nitrates. CNTs used in this paper were grown directly on graphite disk by chemical vapor deposition technique. The capacitive behavior of manganese oxide/CNT composites was investigated by cyclic voltammetry and galvanostatic charge–discharge method in 1 M Na2SO4 aqueous solutions. When the loading mass of MnO2 is 36.9 μg cm 2, the specific capacitance of manganese oxide/CNT composite (based on MnO2) at the charge–discharge current density of 1 mA cm 2 equals 568 F g 1. Additionally, excellent charge–discharge cycle stability (ca. 88% value of specific capacitance remained after 2500 charge–discharge cycles) and power characteristics of the manganese oxide/CNT composite electrode can be observed. The effect of loading mass of MnO2 on specific capacitance of the electrode has also been investigated.  相似文献   

17.
The electrochemical behavior of a commercial LiCoO2 with spherical shape in a saturated Li2SO4 aqueous solution was investigated with cyclic voltammetry and electrochemical impedance spectroscopy. Three redox couples at ESCE = 0.87/0.71, 0.95/0.90 and 1.06/1.01 V corresponding to those found at ELi/Li+=4.08/3.83, 4.13/4.03 and 4.21/4.14 V in organic electrolyte solutions were observed. The diffusion coefficient of lithium ions is 1.649 × 10−10 cm2 s−1, close to the value in organic electrolyte solutions. The results indicate that the intercalation and deintercalation behavior of lithium ions in the Li2SO4 solution is similar to that in the organic electrolyte solutions. However, due to the higher ionic conductivity of the aqueous solution, current response and reversibility of redox behavior in the aqueous solution are better than in the organic electrolyte solutions, suggesting that the aqueous solution is favorable for high rate capability. The charge transfer resistance, the exchange current and the capacitance of the double layer vary with the charge voltage during the deintercalation process. At the peak of the oxidation (0.87 V), the charge transfer resistance is the lowest. These fundamental results provide a good base for exploring new safe power sources for large scale energy storage.  相似文献   

18.
The well-aligned carbon nanotube arrays (ACNTs) were used as supporting material and the γ-MnO2/ACNT electrode with high dispersion of γ-MnO2 has been prepared by electrochemically induced deposition method. The crystal structure and morphology of the γ-MnO2/ACNT electrode were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The capacitive properties of γ-MnO2/ACNT electrode were characterized by cyclic voltammetry and galvanostatic charge–discharge method. The specific capacitance of the γ-MnO2/ACNT electrode is as high as 784 F g 1 based on γ-MnO2 and 234 F g 1 based on γ-MnO2/ACNT composites in 0.1 M Na2SO4 aqueous solution from 0 to 1 V when the charge–discharge current density is 1 mA cm 2. Additionally, the electrode shows excellent power characteristics, high electrochemical reversibility and excellent long-term charge–discharge cycle stability.  相似文献   

19.
Composite G/PPy/PPy(La1−xSrxMnO3)/PPy electrodes made of the perovskite La1−xSrxMnO3 embedded into a polypyrrole (PPy) layer, sandwiched between two pure PPy films, electrodeposited on a graphite support were investigated for electrocatalysis of the oxygen reduction reaction (ORR). PPy and PPy(La1−xSrxMnO3) (0≤ x ≤0.4) successive layers have been obtained on polished and pretreated graphite electrodes following sequential electrodeposition technique. The electrolytes used in the electrodeposition process were Ar saturated 0.1 mol dm−3 pyrrole (Py) plus 0.05 mol dm−3 K2SO4 with and without containing a suspension of 8.33 g L−1 oxide powder. Films were characterized by XRD, SEM, linear sweep voltammetry, cyclic voltammetry (CV) and electrochemical impedance (EI) spectroscopy. Electrochemical investigations were carried out at pH 12 in a 0.5 mol dm−3 K2SO4 plus 5 mmol dm−3 KOH, under both oxygenated and deoxygenated conditions. Results indicate that the porosity of the PPy matrix is considerably enhanced in presence of oxide particles. Sr substitution is found to have little influence on the electrocatalytic activity of the composite electrode towards the ORR. However, the rate of oxygen reduction decreases with decreasing pH of the electrolyte from pH 12 to pH 6. It is noteworthy that in contrast to a non-composite electrode of the same oxide in film form, the composite electrode exhibits much better electrocatalytic activity for the ORR.  相似文献   

20.
This work has obtained polyaniline/manganese dioxide (PANI/MnO2) nanofibers microsphere by interfacial chemical synthesis with 4‐amino‐thiophenol (4‐ATP) as the structure‐directing agent on the Au substrate. The cyclic voltammograms, galvanostatic charge–discharge, and electrochemical impedance spectroscopy were used to determine their capacitive performance. Powder X‐ray diffraction, thermogravimetry and differential scanning calorimetry, Fourier transformed infrared spectroscopy, Brunauer–Emmett–Teller surface area measurements, and scanning electron microscope were performed for physical and chemical characterization. The effect of 4‐ATP and acids on the capacitive performance of PANI/MnO2 nanofibers microsphere was elucidated. The as‐prepared PANI/MnO2 was nanofiber about 30 nm diameters, and they further self‐assembled into sphere. Its specific capacitance is up to 765 F g?1 at 1.0 mA cm?2 in 1.0M Na2SO4 solution. And it shows a high stability with a capacitance fade of only 14.9% after 400 charge–discharge cycles. The symmetric capacitor of PANI/MnO2 (PM10+)/PANI/MnO2 (PM10?) is assembled in 1.0M Na2SO4 solution, and its capacitive performance is compared with that of PANI (+)/PANI (?) and MnO2 (+)/MnO2 (?). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40575.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号