首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of protein concentrations (0.1, 0.25, 0.5, 1.0, 1.5 and 2.0% w/v) and oil volume fractions (5, 15, 25, 35 and 45% v/v) on properties of stabilized emulsions of sweet potato proteins (SPPs) were investigated by use of the emulsifying activity index (EAI), emulsifying stability index (ESI), droplet size, rheological properties, interfacial properties and optical microscopy measurements at neutral pH. The protein concentration or oil volume fraction significantly affected droplet size, interfacial protein concentration, emulsion apparent viscosity, EAI and ESI. Increasing of protein concentration greatly decreased droplet size, EAI and apparent viscosity of SPP emulsions; however, there was a pronounced increase in ESI and interfacial protein concentration (P < 0.05). In contrast, increasing of oil volume fraction greatly increased droplet size, EAI and emulsion apparent viscosity of SPP emulsions, but decreased ESI and interfacial protein concentration significantly (P < 0.05). The rheological curve suggested that SPP emulsions were shear-thinning non-Newtonian fluids. Optical microscopy clearly demonstrated that droplet aggregates were formed at a lower protein concentration of <0.5% (w/v) due to low interfacial protein concentration, while at higher oil volume fractions of >25% (v/v) there was obvious coalescence. In addition, the main components of adsorbed SPP at the oil–water interface were Sporamin A, Sporamin B and some high-molecular-weight aggregates formed by disulfide linkage.  相似文献   

2.
选取两种分子质量相近、黏度相差较大的天然高分子多糖阿拉伯胶(arabic gum,AG)和瓜尔胶(guar gum,GG)分别与肌原纤维蛋白(myofibrillarprotein,MP)进行复合,研究不同多糖添加量(0.1%~0.5%)对MP-多糖复合物乳液性质的影响规律。结果表明,AG和GG均可以显著改善MP的乳化性质,其中AG对乳化活性的改善效果较好,而GG更有利于乳液的稳定性。随着多糖质量分数增加,乳化活性指数和稳定性指数均呈先升高后降低趋势,AG和GG添加量分别为0.3%和0.2%时,乳化活性指数和稳定性指数达到最大值。界面蛋白含量测定结果显示,AG和GG均会导致界面蛋白含量下降,尤其是GG的作用更明显。随着AG和GG添加量增加,乳液粒径逐渐减小,且尺寸分布更加均一,添加量超过0.3%后,GG组乳液出现少量絮凝现象。同一添加量下,GG组乳液粒径明显小于AG组。流变学分析证实,所有乳液均为假塑性流体,表现出弱凝胶性质。AG添加量较少(≤0.3%)时会降低乳液黏度,并明显提高乳液的储能模量,而GG的添加使乳液表观黏度和储能模量均显著提高,与AG相比,高黏度GG制备的乳液拥有更高的...  相似文献   

3.
Emulsifying properties of two partially purified legumin and vicilin (PL and PV) and protein isolate (PPI) from dry pea seeds at various pH values (3.0, 5.0, 7.0 and 9.0) were investigated. The tested emulsion characteristics included droplet size, flocculation and coalescence indices (FI and CI), creaming index, as well as interfacial protein adsorption. Some physicochemical properties of these proteins, e.g., free sulfhydryl and disulfide bond contents, protein solubility (PS), surface hydrophobicity (Ho) and thermal stability (and denaturation), were also characterized. The results indicated that emulsifying ability and emulsion stability of various pea proteins considerably varied with the preparation process, protein composition and pH. Overall, all the pea proteins exhibited least emulsifying ability at pH 5.0 (around isoelectric point), and concomitantly, the resultant emulsions were most unstable against coalescence and creaming. The emulsifying ability of these proteins at pH 3.0 was generally better than that at neutral or alkali pH values, and among all the three proteins, PL exhibited highest emulsifying ability at this pH. The flocculated state and size of droplets in fresh emulsions did not directly affect stability of these emulsions against flocculation and coalescence (upon 24 h of storage), and even creaming (up to 7 days). Interestingly, the PL and PV exhibited much better creaming stability than PPI, at pH deviating from the pI. The emulsifying properties of these proteins were not only related to their PS and Ho, but also associated with the protein adsorption and nature (e.g., viscoelasticity) of interfacial protein films. These results can greatly extend the knowledge for understanding the emulsifying properties of pea proteins, especially the pH dependence of emulsion characteristics.  相似文献   

4.
为探究超声处理大豆分离蛋白-壳聚糖(soybean protein isolate-chitosan,SPI-CS)复合物对形成O/W型乳 液性质的影响,主要研究了复合物表面疏水性、乳化活性、乳化稳定性与油-水界面张力、乳液粒径、乳液稳定性 之间的关系。结果表明:未经超声处理的SPI-CS复合物表面疏水性、乳化活性、乳化稳定性和界面吸附性较低,形 成的O/W型乳液粒径相对较大,约100 μm,乳液Zeta电位较低,乳滴有发生聚集的倾向。乳液贮存7 d后乳层析指数 最高。经超声处理后SPI-CS复合物形成的乳状液性质发生明显变化,随着超声功率的增加,形成的O/W型乳液的稳 定性有所增加:超声功率为400 W时SPI-CS复合物形成的乳液最为稳定,乳层析指数最低;当超声功率超过400 W 时,乳液的光学显微镜观察显示其粒径有所增大,同时乳液的Zeta电位、乳化活性和乳化稳定性明显下降,界面张 力降低缓慢。超声处理暴露了蛋白质分子的内部结构,使部分结构展开、柔性增加,促进了其与壳聚糖之间的静电 相互作用,说明超声处理的大豆分离蛋白与壳聚糖形成的复合物影响了O/W型乳液的稳定性及相关性质。  相似文献   

5.
Comprehension of hen egg yolk emulsifying properties remains incomplete because competition between its various emulsifiers (proteins and lipoproteins containing phospholipids) has not been clearly elucidated and colloidal interactions between yolk-stabilised oil droplets have not been documented. Recent studies emphasised the interest of the fractionation of yolk into plasma and granules to improve this comprehension. In the present study, we characterised, concurrently, emulsion properties (oil droplet size and stability against creaming) and interface attributes (interfacial concentrations of proteins and phospholipids, SDS-PAGE profiles of adsorbed proteins and zeta potential) in oil-in-water (O/W) emulsions prepared with yolk, plasma and granules. We observed these features at four physicochemical conditions (pH 3.0 or 7.0 and at 0.15 or 0.55 M NaCl). Emulsion properties in emulsions made with yolk or plasma varied similarly as a function of pH and NaCl concentration whereas granules emulsions exhibited distinct properties. Therefore the main contributors to yolk emulsifying properties are to be sought for among plasma constituents (proteinaceous or phospholipids). Since, in plasma emulsions, variations of emulsion stability against creaming correlated exclusively to variations of protein interfacial concentration, a driving contribution of the proteinaceous part of plasma, namely apo-LDL, was hypothesised. In the pH and ionic strength ranges studied, zeta potentials of the interfaces were low, excluding extended electrostatic repulsion between oil droplets. We deduced that steric repulsion is the main interaction opposing to droplet aggregation in food emulsions made with yolk.  相似文献   

6.
In this study, sucrose esters were presented as a promising alternative to petrochemically synthesized Tweens for application in coconut milk emulsions. The interfacial and emulsifier properties of sucrose ester (SE), mainly sucrose monostearate, had been investigated in comparison with Tween 60 (TW), an ethoxylate surfactant. The interfacial tension measurement showed that SE had a slightly better ability to lower the interfacial tension at coconut oil–water interface. These surfactants (0.25 wt%) were applied in coconut milk emulsions with 5 wt% fat content. The effects of changes in pH, salt concentration, and temperature on emulsion stability were analyzed from visual appearance, optical micrograph, droplet charges, particle size distributions, and creaming index. Oil droplets in both SE and TW coconut milk emulsions extensively flocculated at pH 4, or around the pI of the coconut proteins. Salt addition induced flocculation in both emulsions. The pH and salt dependence indicated polyelectrolyte nature of proteins, suggesting that the proteins on the surface of oil droplets were not completely displaced by either added nonionic SE or TW. TW coconut milk emulsions appeared to be thermally unstable with some coalesced oil drops after heating and some oil layers separated on top after freeze thawing. The change in temperature had much lesser influence on stability of SE coconut milk emulsions and, especially, it was found that SE emulsions were remarkably stable after the freeze thawing.  相似文献   

7.
为了探究大米蛋白酶解产物中乳化性较好的关键组分,采用酸性蛋白酶、木瓜蛋白酶和胰蛋白酶限制性酶解大米蛋白,分析表面疏水性、二级结构、乳化活性及乳液稳定性以探究不同酶解产物结构特性和乳化特性的关系;筛选最优乳化特性样品后对其超滤分离得到<5 kDa、5~10 kDa和>10 kDa组分,通过界面张力、耗散型石英晶体微天平、粒径、微观结构及贮藏稳定性等指标,探究不同分子量肽的界面特性和乳液稳定性的关系。结果表明,胰蛋白酶酶解产物的得率最高;与大米蛋白相比,除水解度为6%的胰蛋白酶酶解产物外,其他酶解产物的表面疏水性均降低;酶解后β-折叠显著降低,蛋白结构更加舒展;胰2%具有较好的乳化性能;<5 kDa制备的乳液稳定性最差,贮存7 d后粒径由2.59 μm增加到7.82 μm;而>10 kDa组分界面张力较小,界面层较厚,具有较好的乳液贮藏稳定性,表明分子量较大的肽更能有效地稳定乳液。  相似文献   

8.
The emulsifying properties of plant legume protein isolates (soy, pea, and lupin) were compared to a milk whey protein, β‐lactoglobulin (β‐lg), and a nonionic surfactant (Tween 20). The protein fractional composition was characterized using sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis. The following emulsion properties were measured: particle diameter, shear surface ζ‐potential, interfacial tension (IT), and creaming velocity. The effect of protein preheat treatment (90 °C for 10 min) on the emulsifying behavior and the release of selected volatile organic compounds (VOCs) from emulsions under oral conditions was also investigated in real time using proton transfer reaction‐mass spectrometry. The legume proteins showed comparable results to β‐lg and Tween 20, forming stable, negatively charged emulsions with particle diameter d3,2 < 0.4 μm, and maintained stability over 50 d. The relatively lower stability of lupin emulsions was significantly correlated with the low protein surface hydrophobicity and IT of the emulsion. After heating the proteins, the droplet size of pea and lupin emulsions decreased. The VOC release profile was similar between the protein‐stabilized emulsions, and greater retention was observed for Tween 20‐stabilized emulsions. This study demonstrates the potential application of legume proteins as alternative emulsifiers to milk proteins in emulsion products.  相似文献   

9.
Interfacial and emulsifying properties of rice protein concentrate (RPC) have been studied in order to evaluate its potential application to stabilize O–W emulsions. The interfacial behaviour of adsorbed proteins films constituted with RPC has been studied at the air–water and oil–water interfaces at two pH values (2 and 8). The type and the amount of soluble proteins have been determined in aqueous dispersions and results put forward the presence of most frequent rice protein profile and a significant degree of protein denaturation with a very low solubility. Air–water and oil–water interfacial properties have been determined as a function of time, concentration and pH: air–water by surface pressure under compression–expansion cycles and oil–water by interfacial tension. Interfacial rheology has been studied under dilatational deformations, either at the initial step of film formation or once the interfacial tension was at equilibrium (the film was completely formed). RPC-stabilised O–W emulsions has been also analysed by Droplet Size Distribution (DSD) measurements and interfacial protein concentration. Both interfacial and bulk emulsion properties reveal that RPC showed an enhanced potential as emulsifier at low pH. Globally; results indicate clearly important differences in the structural characteristics of rice protein films between pH 2 and 8 that impact on emulsifying properties.  相似文献   

10.
The dynamic interfacial tension (DIFT) at oil–water interface, diffusion coefficients, surface hydrophobicity, zeta potential and emulsifying properties, including emulsion activity index (EAI), emulsion stability index (ESI) and droplet size of lentil protein isolate (LPI), were measured at different pH and LPI concentration, in order to elucidate its emulsifying behaviour. Sodium caseinate (NaCas), whey protein isolate (WPI), bovine serum albumin (BSA) and lysozyme (Lys) were used as benchmark proteins and their emulsifying property was compared with that of LPI. The speed of diffusion-controlled migration of these proteins to the oil/water interface, was in the following order: NaCas > LPI > WPI > BSA > Lys, while their surface hydrophobicity was in the following order: BSA > LPI > NaCas > WPI > Lys. The EAI of emulsions stabilised by the above proteins ranged from 90.3 to 123.3 m2/g and it was 93.3 ± 0.2 m2/g in LPI-stabilised emulsion. However, the stability of LPI-stabilised emulsions was slightly lower compared to that of WPI and NaCas-stabilised emulsions at the same protein concentration at pH 7.0. The ESI of LPI emulsions improved substantially with decrease in droplet size when protein concentration was increased (20–30 mg/ml). Reduction of disulphide bonds enhanced both the EAI and ESI compared to untreated samples. Heat treatment of LPI dispersions resulted in poor emulsion stability due to molecular aggregation. The stability of LPI-stabilised emulsions was found to decrease in the presence of NaCl. This study showed that LPI can be as effective emulsifiers of oil-in-water emulsions as are WPI and NaCas at ?20 mg/ml concentrations both at low and neutral pH. The emulsifying property of LPI can be improved by reducing the intra and inter-disulphide bond by using appropriate reducing agents.  相似文献   

11.
低钠条件下肌原纤维蛋白(myofibrillar protein,MP)作为乳化剂制备的乳液稳定性差,本实验采用高强度超声波(high intensity ultrasound,HIU)(频率20 kHz、功率450 W)对低钠条件下(0.15 mol/L NaCl)MP进行不同时间(0、3、6、9、12 min)处理,测定处理后MP乳液乳化活性指数(emulsifying activity index,EAI)、乳液稳定性指数(emulsion stability index,ESI)、Turbiscan稳定性指数(turbiscan stability index,TSI)和平均粒径等,并进行微观结构观察和流变性分析等,研究低钠条件下超声处理对鸡肉MP乳化特性及其乳液稳定性和流变性能的影响。结果表明:与对照组相比,随着超声处理时间延长,MP的EAI和ESI显著增加(P<0.05),MP制备乳液的TSI和粒径随着超声处理时间的延长明显减小,且乳液液滴分布均匀,乳液Zeta-电位的绝对值显著增加(P<0.05)。乳液的流变学特性分析结果表明超声波明显提高了MP乳液的黏弹性。MP乳液的油-水界面张力分析结果显示超声处理有效增强了MP的移动性,使界面张力迅速降低,同时超声处理显著增加了MP乳液吸附蛋白相对含量(P<0.05),这表明超声处理MP有助于稳定乳液。通过冷场扫描电子显微镜观察进一步证实了超声处理12 min MP制备的乳液液滴体积最小。综上,超声波能够有效提高低钠条件下MP的乳液稳定性,本实验可为超声处理在减盐乳化型肉制品中的应用提供理论参考。  相似文献   

12.
Grewia gums were extracted with phosphate (PB) and sodium metabisulphite buffers (SMB) and their emulsification properties in acidic oil-in-water emulsions on ageing were studied by means of droplet size distribution, ζ-potential measurements, interfacial composition analysis and viscometry. PB extracts showed smaller droplet sizes (~10 μm) than SMB isolates (>35 μm) and greater long-term stability. PB-stabilised emulsions also demonstrated the least polysaccharide (~0.6 mg m−2) and protein (~0.2 mg m−2) interfacial coverage compared with SMB counterparts (~1.5 mg m−2 for polysaccharide and ~ 1 mg m−2 for protein). ζ-Potential measurements revealed negative interfacial charge for all emulsions confirming the presence of polysaccharide-laden interfaces. Droplet size distribution also varied among emulsions during ageing indicating a complex relationship between interfacial composition and stability. The present work shows that different emulsifying properties may be obtained depending on the extraction technique employed that could be exploited in preparation of emulsions for flavour or bioactive-delivery applications.  相似文献   

13.
Polysaccharide was isolated from Cordia abyssinica and its effect, at differing concentrations, on its emulsifying ability was determined. Emulsions of vegetable oil containing up to 1% of the polysaccharide in phosphate pH 7.4 buffer, were prepared by using a hand piston homogenizer. Emulsification was assessed by diluting samples of the emulsions in sodium dodecyl sulphate and measuring absorbance at 500 nm. Addition of increasing concentrations of the polysaccharide up to 1% enhanced emulsification and emulsion stability. Above 1% concentration the polysaccharide solutions were too viscous for making emulsions conveniently. At a constant concentration of the polysaccharide, addition of up to a 1% concentration of salt enhanced emulsion formation. Further addition of salt above 1% resulted in no further changes in emulsifying ability, but the stability of the emulsions formed decreased on increasing the concentration of salt above 1%. The effect of pH on emulsifying ability was investigated by preparing emulsions using buffers of different pH, from pH 3 to pH 13. The polysaccharide had poor emulsifying ability below pH 7. Emulsifying ability increased with pH between pH 7 and 11. At pH above 11 there was a decrease in emulsifying ability.  相似文献   

14.
The objective of this study was to apply response surface methodology to estimate the emulsifying capacity and stability of mixtures containing isolated and textured soybean proteins combined with pectin and to evaluate if the extrusion process affects these interfacial properties. A simplex-centroid design was applied to the model emulsifying activity index (EAI), average droplet size (D[4,3]) and creaming inhibition (CI%) of the mixtures. All models were significant and able to explain more than 86% of the variation. The high predictive capacity of the models was also confirmed. The mean values for EAI, D[4,3] and CI% observed in all assays were 0.173 ± 0.015 nm, 19.2 ± 1.0 μm and 53.3 ± 2.6%, respectively. No synergism was observed between the three compounds. This result can be attributed to the low soybean protein solubility at pH 6.2 (<35%). Pectin was the most important variable for improving all responses. The emulsifying capacity of the mixture increased 41% after extrusion. Our results showed that pectin could substitute or improve the emulsifying properties of the soybean proteins and that the extrusion brings additional advantage to interfacial properties of this combination.  相似文献   

15.
The denaturation degree of egg yolk (EY) protein was determined in dilute EY suspensions containing 20% fresh EY (w/w) as a function of the heating time (0–40 min.) at 74 °C. The impact of such a thermal treatment on the emulsifying properties of the EY was studied in a fluid oil-in-water (O/W) emulsion containing 30% oil (v/v). Heating of the EY prior to emulsification appeared to slightly increase the oil droplet size and to drastically decrease of the level of flocculation. It was also shown that the concentration of proteins in the interfacial film increases with increasing degree of EY protein denaturation, which is thought to be responsible for the change in the colloidal interactions between droplets. The increased steric repulsions due to the increased interfacial protein concentration could explain the decrease of oil droplet flocculation. The impact of such modifications on the rheological properties and creaming stability of the emulsions is discussed.  相似文献   

16.
琥珀酰化和棕榈酰化对大豆蛋白界面特性的影响   总被引:2,自引:0,他引:2  
以琥珀酸酐和棕榈酸N-羟琥珀酰亚胺酯为酰化剂,使琥珀酰基和棕榈酰基与大豆分离蛋白(SPI)共价结合,主要检测了改性程度对SPI溶解性、表面疏水性、乳化性、在油-水界面上的吸附动力学及其界面膨胀流变特性的影响,分析了溶解性和表面疏水性与其界面特性的关系,比较了亲水和疏水改性对大豆蛋白界面特性的影响。研究显示,随着琥珀酰化程度的增加,SPI的水溶性增加,表面疏水性下降,蛋白分子在油-水界面上的吸附速率增加,吸附膜的界面膨胀模量增大,体系的乳化性能得到有效改善;适度的棕榈酰化(酰化程度为30.21%)使SPI的表面疏水性增加,溶解性没有明显降低,蛋白分子在油-水界面上的吸附加快,吸附膜的膨胀模量增大,乳化性能得到一定的改善;而当棕榈酰化程度达50%左右时,溶解性下降到近40%,吸附速率明显降低,乳化体系无法形成;比较而言,亲水的琥珀酰化比疏水的棕榈酰化对SPI界面特性的影响更为明显。因此,共价结合疏水基团使大豆蛋白表面疏水性增加对其界面特性的改善是有限的。  相似文献   

17.
Canola protein albumin fraction, globulin fraction, and canola protein isolate (CPI) were compared to commercial soy protein isolate (SPI) in terms of their emulsifying properties at various pH values. The globulin fraction had higher emulsifying capacity (EC), higher emulsifying activity index (EAI), and the droplet size of emulsions it stabilized was consistently smaller irrespective of pH compared to albumin fraction or CPI. In comparison to SPI, globulin fractions also had higher EC at all pH values tested, higher EAI at acidic pH, and smaller or comparable average emulsion droplet size at both pH 4 and 7. The stability of canola protein based emulsions were comparable to those of SPI based emulsions at most pH values (except the emulsion stabilized by the CPI at pH 4), with no significant (p > 0.05) changes in droplet size during storage for up to 7 days at room temperature. These emulsions, however, experienced separation into the emulsion and serum phases after 24 h storage at room temperature with the exception of CPI- and SPI-stabilized emulsions at pH 9. This study demonstrates the comparable emulsifying properties (forming or stabilizing) of some canola proteins to commercially available SPI, suggesting the potential use of canola proteins in food applications.  相似文献   

18.
The effects of 5 mm l ‐histidine (l ‐His) on water‐binding capacity, gel strength, thermal gelling properties of chicken breast myofibrillar proteins (MPs) in 1 mm NaCl or 0.6 m NaCl solutions (pH 7.0) were investigated. l ‐His could significantly increase the solubility and thermal gelling ability of MPs in 1 mm NaCl. l ‐His at 1 mm NaCl shortened the water relaxation time and decreased the water mobility of MPs gel. l ‐His promoted the formation of MPs gel structure with small pores and thin strands at 1 mm NaCl. These resulted in the enhanced water retention and weak gel strength of MPs in low ionic strength solution. The water‐binding capacity of MPs gels formed in 1 mm NaCl containing 5 mm l ‐His was equivalent to that with 0.6 m NaCl. The information could offer certain theoretical foundation to apply l ‐His as sodium salt substitute for developing low‐salt meat gelling product with high yield.  相似文献   

19.
The emulsifying (emulsion capacity, EC; emulsion activity/stability indices, EAI–ESI and creaming stability, CS) and physicochemical properties (surface charge/hydrophobicity, protein solubility, interfacial tension, and droplet size) of chickpea (ChPI), faba bean (FbPI), lentil (LPI), and pea (PPI) protein isolates produced by isoelectric precipitation and salt extraction were investigated relative to each other and a soy protein isolate (SPI). Both the legume source and method of isolate production showed significant effects on the emulsifying and physicochemical properties of the proteins tested. All legume proteins carried a net negative charge at neutral pH, and had surface hydrophobicity values ranging between 53.0 and 84.8 (H0-ANS), with PPI showing the highest value. Isoelectric precipitation resulted in isolates with higher surface charge and solubility compared to those produced via salt extraction. The EC values ranged between 476 and 542 g oil/g protein with LPI showing the highest capacity. Isoelectric-precipitated ChPI and LPI had relatively high surface charges (~−22.3 mV) and formed emulsions with smaller droplet sizes (~ 1.6 μm), they also displayed high EAI (~ 46.2 m2/g), ESI (~ 84.9 min) and CS (98.6%) results, which were comparable to the SPI.  相似文献   

20.
Effect of pectin (34–40% esterification), glycerol and trehalose at two concentrations (0.1% and 0.5%, wt./wt%) on physicochemical and emulsifying properties of phosvitin (Pv) was investigated under the mild conditions (oil volume fraction, 0.25; protein concentration, 5 mg/mL; 10 mM sodium phosphate buffer, pH 7.0). Pv showed better emulsifying properties than sodium caseinate (Sc). Glycerol (0.5%) significantly increased the emulsifying activity index (EAI) of Pv from 19.8 to 20.9 and the emulsion stability index (ESI) from 67.6 to 75.1. The higher ESI of Pv was also obtained by 0.1% pectin and 0.5% trehalose. The results obtained from circular dichroism (CD) spectra indicated that all the tested additives displayed slight effect on the unfolded structure of Pv. Furthermore, fluorescence pattern demonstrated that glycerol and trehalose increased the hydrophobicity of Pv, while pectin displayed an opposite effect. All emulsions exhibited a shear-thinning behavior and the flow behavior was fitted to the power law model. Frequency sweeps of the emulsions illustrated that they behaved like a viscous liquid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号