首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Indoor pollen concentrations are an underestimated human health issue. In this study, we measured hourly indoor birch pollen concentrations on 8 days in April 2015 with portable pollen traps in five rooms of a university building at Freising, Germany. These data were compared to the respective outdoor values right in front of the rooms and to background pollen data. The rooms were characterized by different aspects and window ventilation schemes. Meteorological data were equally measured directly in front of the windows. Outdoor concentration could be partly explained with phenological data of 56 birches in the surrounding showing concurrent high numbers of trees attaining flowering stages. Indoor pollen concentrations were lower than outdoor concentrations: mean indoor/outdoor (I/O) ratio was highest in a room with fully opened window and additional mechanical ventilation (.75), followed by rooms with fully opened windows (.35, .12) and lowest in neighboring rooms with tilted window (.19) or windows only opened for short ventilation (.07). Hourly I/O ratios depended on meteorology and increased with outside temperature and wind speed oriented perpendicular to the window opening. Indoor concentrations additionally depended on the previously measured concentrations, indicating accumulation of pollen inside the rooms even after the full flowering period.  相似文献   

2.
A mechanistic model that considers particle dynamics and their effects on surface emissions and sorptions was developed to predict the fate and transport of phthalates in indoor environments. A controlled case study was conducted in a test house to evaluate the model. The model‐predicted evolving concentrations of benzyl butyl phthalate in indoor air and settled dust and on interior surfaces are in good agreement with measurements. Sensitivity analysis was performed to quantify the effects of parameter uncertainties on model predictions. The model was then applied to a typical residential environment to investigate the fate of di‐2‐ethylhexyl phthalate (DEHP) and the factors that affect its transport. The predicted steady‐state DEHP concentrations were 0.14 μg/m3 in indoor air and ranged from 80 to 46 000 μg/g in settled dust on various surfaces, which are generally consistent with the measurements of previous studies in homes in different countries. An increase in the mass concentration of indoor particles may significantly enhance DEHP emission and its concentrations in air and on surfaces, whereas increasing ventilation has only a limited effect in reducing DEHP in indoor air. The influence of cleaning activities on reducing DEHP concentration in indoor air and on interior surfaces was quantified, and the results showed that DEHP exposure can be reduced by frequent and effective cleaning activities and the removal of existing sources, though it may take a relatively long period of time for the levels to drop significantly. Finally, the model was adjusted to identify the relative contributions of gaseous sorption and particulate‐bound deposition to the overall uptake of semi‐volatile organic compounds (SVOCs) by indoor surfaces as functions of time and the octanol‐air partition coefficient (Koa) of the chemical. Overall, the model clarifies the mechanisms that govern the emission of phthalates and the subsequent interactions among air, suspended particles, settled dust, and interior surfaces. This model can be easily extended to incorporate additional indoor source materials/products, sorption surfaces, particle sources, and room spaces. It can also be modified to predict the fate and transport of other SVOCs, such as phthalate‐alternative plasticizers, flame retardants, and biocides, and serves to improve our understanding of human exposure to SVOCs in indoor environments.  相似文献   

3.
Indoor and outdoor concentrations of PM2.5 were measured for 24 h during heating and non-heating seasons in a rural solid fuel burning Native American community. Household building characteristics were collected during the initial home sampling visit using technician walkthrough questionnaires, and behavioral factors were collected through questionnaires by interviewers. To identify seasonal behavioral factors and household characteristics associated with indoor PM2.5, data were analyzed separately by heating and non-heating seasons using multivariable regression. Concentrations of PM2.5 were significantly higher during the heating season (indoor: 36.2 μg/m3; outdoor: 22.1 μg/m3) compared with the non-heating season (indoor: 14.6 μg/m3; outdoor: 9.3 μg/m3). Heating season indoor PM2.5 was strongly associated with heating fuel type, housing type, indoor pests, use of a climate control unit, number of interior doors, and indoor relative humidity. During the non-heating season, different behavioral and household characteristics were associated with indoor PM2.5 concentrations (indoor smoking and/or burning incense, opening doors and windows, area of surrounding environment, building size and height, and outdoor PM2.5). Homes heated with coal and/or wood, or a combination of coal and/or wood with electricity and/or natural gas had elevated indoor PM2.5 concentrations that exceeded both the EPA ambient standard (35 μg/m3) and the WHO guideline (25 μg/m3).  相似文献   

4.
In this work the evaluation of thermal comfort conditions, that two students are subjected, in a classroom desk equipped with a localized radiant system placed in front and behind the occupants seated nearby windows equipped with curtains subjected to solar radiation, in Winter conditions, is made. In the simulation, performed in a 2.7 × 2.4 × 2.4 m3 virtual chamber, two occupants seated in a classroom desk, equipped with two localized radiant surfaces placed in front and two localized radiant surfaces placed behind them, a window subjected to solar radiation and an internal curtain are considered.  相似文献   

5.
戴立飞 《住宅科技》2005,(4):29-31,46
在天然光的利用过程中关键是处理好采光口的窗体设计.从窗体不同部分的不同功能定位出发,通过遮阳板、室内反光搁板、百叶窗、窗帘等构配件对直射光的遮挡、反射和漫射光的利用进行了分析,进而对天然采光中最常见的侧窗窗体的设计方法进行了相应的探讨.  相似文献   

6.
Xilei Dai  Junjie Liu  Yongle Li 《Indoor air》2021,31(4):1228-1237
Due to the severe outdoor PM2.5 pollution in China, many people have installed air-cleaning systems in homes. To make the systems run automatically and intelligently, we developed a recurrent neural network (RNN) that uses historical data to predict the future indoor PM2.5 concentration. The RNN architecture includes an autoencoder and a recurrent part. We used data measured in an apartment over the course of an entire year to train and test the RNN. The data include indoor/outdoor PM2.5 concentration, environmental parameters and time of day. By comparing three different input strategies, we found that a strategy employing historical PM2.5 and time of day as inputs performed best. With this strategy, the model can be applied to predict the relatively stable trend of indoor PM2.5 concentration in advance. When the input length is 2 h and the prediction horizon is 30 min, the median prediction error is 8.3 µg/m3 for the whole test set. For times with indoor PM2.5 concentrations between (20,50] µg/m3 and (50,100] µg/m3, the median prediction error is 8.3 and 9.2 µg/m3, respectively. The low prediction error between the ground-truth and predicted values shows that the RNN can predict indoor PM2.5 concentrations with satisfactory performance.  相似文献   

7.
The envelope of low‐energy buildings is generally constructed with significant amounts of plastics, sealants and insulation materials that are known to contain various chemical additives to improve specific functionalities. A commonly used group of additives are flame retardants to prevent the spread of fire. In this study, decabromodiphenyl ether (BDE‐209) and fourteen emerging brominated flame retardants (BFRs) were analyzed in indoor dust, air and on the window surface of newly built low‐energy preschools to study their occurrence and distribution. BDE‐209 and decabromodiphenyl ethane (DBDPE) were frequently detected in the indoor dust (BDE‐209: <4.1‐1200 ng/g, DBDPE: <2.2‐420 ng/g) and on window surfaces (BDE‐209: <1000‐20 000 pg/m2, DBDPE: <34‐5900 pg/m2) while the other thirteen BFRs were found in low levels (dust: <0.0020‐5.2 ng/g, window surface: 0.0078‐35 pg/m2). In addition, the detection frequencies of BFRs in the indoor air were low in all preschools. Interestingly, the dust levels of BDE‐209 and DBDPE were found to be lower in the environmentally certified low‐energy preschools, which could be attributed to stricter requirements on the chemical content in building materials and products. However, an increase of some BFR levels in dust was observed which could imply continuous emissions or introduction of new sources.  相似文献   

8.
PM10‐bound polycyclic aromatic hydrocarbons (PAHs) levels were monitored at urban locations (outdoor/indoor) within the city of Madrid between May 2017 and April 2018. Fourteen PAH congeners were measured, potential emission sources were identified as were potential carcinogenic risks. The ΣPAHs averaged 0.577 and 0.186 ng/m3 in outdoor and indoor air, with a high linear correlation per individual mean PAH and month. The largest contributors to the ΣPAHs were the high‐molecular‐weight PAHs. Principal component analysis‐multiple linear regression results showed that emissions from diesel and vehicular processes explained 27% and 23% of the total variance of outdoor and indoor air, while combustion processes accounted for 30% and 25% in ambient and indoor air, respectively. During the cold season, biomass burning plus coal and wood combustion were additional sources of outdoor emissions. The heavy‐, medium‐ and light‐molecular‐weight PAH originating from outdoor sources accounted for 72%, 80%, and ~60% of the indoor levels of the three respective PAH groups. Average BaP concentration was 0.029 and 0.016 ng/m3 in outdoor and indoor air, respectively. Estimated BaPeq concentration averaged 0.072, 0.035, and 0.027 ng/m3 for outdoor, indoor, and indoor‐generated individual PAH concentrations, respectively. The estimated carcinogenic risk falls within the range of acceptable risk targeted by the US‐EPA.  相似文献   

9.
A solar-driven UV/Chlorine advanced oxidation process   总被引:1,自引:0,他引:1  
An overlap of the absorption spectrum of the hypochlorite ion (OCl) and the ultraviolet (UV) end of the solar emission spectrum implies that solar photons can probably initiate the UV/chlorine advanced oxidation process (AOP). The application of this solar process to water and wastewater treatment has been investigated in this study. At the bench-scale, the OCl photolysis quantum yield at 303 nm (representative of the lower end of the solar UV region) and at concentrations from 0 to 4.23 mM was 0.87 ± 0.01. Also the hydroxyl radical yield factor (for an OCl concentration of 1.13 mM) was 0.70 ± 0.02. Application of this process, at the bench-scale and under actual sunlight, led to methylene blue (MB) photobleaching and cyclohexanoic acid (CHA) photodegradation. For MB photobleaching, the OCl concentration was the key factor causing an increase in the pseudo first-order rate constants. The MB photobleaching quantum yield was affected by the MB concentration, but not much by the OCl concentration. For CHA photodegradation, an optimal OCl concentration of 1.55 mM was obtained for a 0.23 mM CHA concentration, and a scavenger effect was observed when higher OCl concentrations were applied. Quantum yields of 0.09 ± 0.01 and 0.89 ± 0.06 were found for CHA photodegradation and OCl photolysis, respectively. In addition, based on the Air Mass 1.5 reference solar spectrum and experimental quantum yields, a theoretical calculation method was developed to estimate the initial rate for photoreactions under sunlight. The theoretical initial rates agreed well with the experimental rates for both MB photobleaching and CHA photodegradation.  相似文献   

10.
A total of 15 classrooms went through on‐site assessments/inspections, including measurements of temperature (T), and concentrations of carbon monoxide (CO) and carbon dioxide (CO2). In addition, the level of surface biocontamination/cleaning effectiveness was assessed by measuring adenosine triphosphate (ATP) levels on students' desks. Based on the data, the quality of facilities in the buildings was low. Classroom occupancy exceeded ASHRAE 50 person/100 m2 standard in all cases indicating overcrowding. However, concentrations of CO2 remained below 1000 ppm in most classrooms. On the other hand, indoor T was above the recommended levels for thermal comfort in all classrooms. Maximum indoor CO was 6 ppm. Median ATP concentrations on the desk tops were moderately high in all schools. The use of open incinerators and power generator sets near classrooms, which was suspected to be the main source of CO, should be discouraged. Improved hygiene could be achieved by providing the students access to functioning bathroom facilities and cafeteria, and by effective cleaning of high contact surfaces such as desks. Although ventilation seems adequate based on CO2 concentrations, thermal comfort was not attained especially in the afternoon during extreme sunlight. Therefore, installing passive and/or mechanical cooling systems should be considered in this regard.  相似文献   

11.
The design of a simple energy conserving window management system is described, and its heat transfer characteristics are calculated. The device serves as a quasi-active solar collector during winter daytime, provides added insulation comparable with that of vented storm windows during winter nighttime, and rejects solar heat during summer cooling periods. The problem of avoiding the intensity of direct sun through windows while obtaining essentially all the associated heat is effectively solved with a window system of this type. The results of the numerical modeling show that the dual shade:will be approximately 90% as energy efficient as an unshaded window while intercepting direct sunlight;will save about 40% on energy losses through a single pane window during winter nighttime;will reduce solar heat gain by about 70% during peak-power summer air conditioning periods.  相似文献   

12.
Effective cleaning techniques are essential for the sterilization of rooms in hospitals and industry. No-touch devices (NTDs) that use fumigants such as hydrogen peroxide (H2O2), formaldehyde (HCHO), ozone (O3), and chlorine dioxide (OClO) are a recent innovation. This paper reports a previously unconsidered potential consequence of such cleaning technologies: the photochemical formation of high concentrations of hydroxyl radicals (OH), hydroperoxy radicals (HO2), organic peroxy radicals (RO2), and chlorine radicals (Cl) which can form harmful reaction products when exposed to chemicals commonly found in indoor air. This risk was evaluated by calculating radical production rates and concentrations based on measured indoor photon fluxes and typical fumigant concentrations during and after cleaning events. Sunlight and fluorescent tubes without covers initiated photolysis of all fumigants, and plastic-covered fluorescent tubes initiated photolysis of only some fumigants. Radical formation was often dominated by photolysis of fumigants during and after decontamination processes. Radical concentrations were predicted to be orders of magnitude greater than background levels during and immediately following cleaning events with each fumigant under one or more illumination condition. Maximum predicted radical concentrations (1.3 × 107 molecule cm−3 OH, 2.4 ppb HO2, 6.8 ppb RO2 and 2.2 × 108 molecule cm−3 Cl) were much higher than baseline concentrations. Maximum OH concentrations occurred with O3 photolysis, HO2 with HCHO photolysis, and RO2 and Cl with OClO photolysis. Elevated concentrations may persist for hours after NTD use, depending on the air change rate and air composition. Products from reactions involving radicals could significantly decrease air quality when disinfectants are used, leading to adverse health effects for occupants.  相似文献   

13.
炎热地区夏季窗户的热过程研究   总被引:8,自引:0,他引:8  
以重庆地区为例,探讨了炎热地区夏季南向和西向窗户的太阳辐射得热问题。认为辐射得热是导致室内热环境恶化的首要原因,西向铝合金双玻窗的辐射得热高达520W/m^2,而基于室内外温差的热流最大也不超过50W/m^2;对于南向窗,太阳直射对室内热环境影响相对较小,天空散射与环境反射是窗户得热的主要来源。对炎热地区的窗户节能而言,有效控制辐射得热、采用遮阳装置是问题的关键。  相似文献   

14.
More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10–800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events. The highest emission rate was caused by burning candles (5.3 × 1013 h−1). Data were analyzed by the single-parameter approach (SPA) and the indoor aerosol dynamics model approach (IAM). Due to the consideration of particle deposition, coagulation, and time-dependent ventilation rates, the emission rates of the IAM approach were about twice as high as those of the SPA. Correction factors are proposed to convert the emission rates obtained from the SPA approach into more realistic values. Overall, indoor sources contributed ~ 56% of the daily-integrated particle number exposure in households under study. Burning candles and opening the window leads to seasonal differences in the contributions of indoor sources to residential exposure (70% and 40% in the cold and warm season, respectively). Application of the IAM approach allowed to attribute the contributions of outdoor particles to the penetration through building shell and entry through open windows (26% and 15%, respectively).  相似文献   

15.
百叶外遮阳太阳散射辐射计算模型及程序实现   总被引:1,自引:0,他引:1  
窗户外部的遮阳系统可以减少进入室内的太阳辐射得热量。目前,在计算遮阳系统对太阳辐射的遮挡作用时,仅仅从几何角度上考虑遮阳构件对直射辐射的减少作用,没有考虑对散射辐射的影响,但在实际中,遮阳构件的存在,对散射辐射的影响不能忽略,特别是对于百叶类型的遮阳构造,由于其布置较为紧密,对直射辐射遮挡较多,进入室内的太阳辐射主要为散射辐射,因此建立详细的散射辐射计算模型,可以正确反映和评估其遮阳效果,并为计算遮阳构件对建筑能耗的影响提供基础。通过分析散射辐射入射到百叶遮阳板上的光学特性,建立用于计算太阳散射辐射透过和反射的数学模型,并根据该模型得到用于计算机编程的算法。该模型和算法可以应用于不同的百叶遮阳系统,为建筑能耗模拟中考虑百叶遮阳板对空调能耗的影响提供理论基础。  相似文献   

16.
Window opening and closing is the most preferred behavior for occupants to control their indoor environment in homes. This study aims to identify driving forces for window opening and closing behavior in the home. The additional field survey was carried out for the cooling period after following the previous study. The state of windows and environmental variables for outdoor and indoor were continuously monitored in 23 sample homes over one year. The monitored data provide evidence that there is a statistically significant relationship between window opening behavior and outdoor temperature. The behavior of the occupant's manual control of windows can be described by seasonal effects, occupancy, and time of day. Indoor stimuli, such as such as temperature, humidity, and CO2, can better account for the window opening behavior than can outdoor stimuli. There are clear differences in driving variables between window opening and closing behavior. The closing behavior is better described when the outdoor and indoor variables are combined. Finally, multivariate logistic regression models were developed to predict typical patterns of window opening and closing as a function of indoor and outdoor variables.  相似文献   

17.
徐菁 《建筑节能》2016,(6):61-64
预窗户是建筑外围护结构的热敏感部位。窗口外遮阳能减少进入室内的太阳辐射得热量,但同时也会对室内采光产生不利影响。以西安地区南向窗口为例,用Ecotect软件对设置了不同遮阳设施的室内进行采光系数及照度模拟。通过对模拟结果的分析与比较,得出水平式遮阳对室内采光更为有利的结论。  相似文献   

18.
People spend approximately 80% of their time indoor, making the understanding of the indoor chemistry an important task for safety. The high surface-area-to-volume ratio characteristic of indoor environments leads the semi-volatile organic compounds (sVOCs) to deposit on the surfaces. Using a long path absorption photometer (LOPAP), this work investigates the formation of nitrous acid (HONO) through the photochemistry of adsorbed nitrate anions and its enhancement by the presence of furfural. Using a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), this work also investigates the surface emissions of VOCs from irradiated films of furfural and a mix of furfural and nitrate anions. Among the emitted VOCs, 2(5H)-furanone/2-Butenedial was observed at high concentrations, leading to maleic anhydride formation after UV irradiation. Moreover, the addition of potassium nitrate to the film formed NOx and HONO concentrations up to 10 ppb, which scales to ca. 4 ppb for realistic indoor conditions. This work helps to understand the high levels of HONO and NOx measured indoors.  相似文献   

19.
OH and HO2 profiles measured in a real environment have been compared to the results of the INCA‐Indoor model to improve our understanding of indoor chemistry. Significant levels of both radicals have been measured and their profiles display similar diurnal behavior, reaching peak concentrations during direct sunlight (up to 1.6×106 and 4.0×107 cm?3 for OH and HO2, respectively). Concentrations of O3, NOx, volatile organic compounds (VOCs), HONO, and photolysis frequencies were constrained to the observed values. The HOx profiles are well simulated in terms of variation for both species (Pearson's coefficients: pOH=0.55, pHO2=0.76) and concentration for OH (mean normalized bias error: MNBEOH=?30%), HO2 concentration being always underestimated (MNBEHO2=?62%). Production and loss pathways analysis confirmed HONO photolysis role as an OH precursor (here up to 50% of the production rate). HO2 formation is linked to OH‐initiated VOC oxidation. A sensitivity analysis was conducted by varying HONO, VOCs, and NO concentrations. OH, HO2, and formaldehyde concentrations increase with HONO concentrations; OH and formaldehyde concentrations are weakly dependent on NO, whereas HO2 concentrations are strongly reduced with increasing NO. Increasing VOC concentrations decreases OH by consumption and enhances HO2 and formaldehyde.  相似文献   

20.
The literature on the contribution of kerosene lighting to indoor air particulate concentrations is sparse. In rural Uganda, kitchens are almost universally located outside the main home, and kerosene is often used for lighting. In this study, we obtained longitudinal measures of particulate matter 2.5 microns or smaller in size (PM2.5) from living rooms and kitchens of 88 households in rural Uganda. Linear mixed‐effects models with a random intercept for household were used to test the hypotheses that primary reported lighting source and kitchen location (indoor vs outdoor) are associated with PM2.5 levels. During initial testing, households reported using the following sources of lighting: open‐wick kerosene (19.3%), hurricane kerosene (45.5%), battery‐powered (33.0%), and solar (1.1%) lamps. During follow‐up testing, these proportions changed to 29.5%, 35.2%, 18.2%, and 9.1%, respectively. Average ambient, living room, and kitchen PM2.5 levels were 20.2, 35.2, and 270.0 μg/m3. Living rooms using open‐wick kerosene lamps had the highest PM2.5 levels (55.3 μg/m3) compared to those using solar lighting (19.4 μg/m3; open wick vs solar, P=.01); 27.6% of homes using open‐wick kerosene lamps met World Health Organization indoor air quality standards compared to 75.0% in homes using solar lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号