首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The flow of a high‐speed unsteady jet is analyzed using computational fluid dynamics for an incompressible flow with the k–ε turbulence model. The pseudo‐nozzle concept is applied to the inlet condition with a large pressure gradient. The results show that the time history of the jet development agrees with the experimental data for methane and hydrogen fuels. In addition, the effect of the injection condition on the development of the jet tip is well described with this model. Furthermore, the effects of inlet conditions of the turbulence intensity and scale on the flow are investigated. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(1): 1– 12, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20141  相似文献   

2.
When hydrogen flows through a small finite length constant exit area nozzle the viscous effects create a fluid throat which acts as a converging-diverging nozzle and lead to Mach number greater than one at the exit if the jet is under-expanded. This phenomenon influences the mass flow rate and the dispersion cloud size. In this study, the boundary layer effect on the unsteady hydrogen sonic jet flow through a 1 mm diameter pipe from a high pressure reservoir (up to 70 MPa) is studied using computational fluid dynamics with a large eddy simulation turbulence model. This viscous flow simulation is compared with a non-viscous simulation to demonstrate that the velocity is supersonic at the exit of a small exit nozzle and that the mass flow is reduced.  相似文献   

3.
A numerical study is performed on transport phenomena in a turbulent jet diffusion flame of hydrogen from a vertical circular nozzle. An anisotropic kϵt2ϵt model and the eddy‐dissipation model are employed to simulate thermal fluid flow and combustion phenomena, respectively. The governing boundary‐layer equations are discretized by means of a control volume finite‐difference technique and are numerically solved. The model predicts the experimental data in the existing literature. It is found from the study that (i) the model employed here can be applied to combustion phenomenon, and (ii) the presence of flame enhances the anisotropy of turbulence and causes a substantial attenuation in the turbulent kinetic energy, that is, most turbulent kinetic energy in the flame in the downstream part is laden exclusively in the streamwise fluctuation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The use of a jet from an orifice nozzle with a saddle‐backed‐shape velocity profile and a contracted flow at the nozzle exit may improve the heat transfer characteristics on an impingement plate because of its larger centerline velocity. However, it requires more power to operate than a common nozzle because of its higher flow resistance. We therefore initially considered the use of a cone orifice nozzle to obtain better heat transfer performance as well as to decrease the flow resistance. We examined the effects of the cone angle α on the cone orifice free jet flow and heat transfer characteristics of the impinging jet. We compared two nozzles: a pipe nozzle and a quadrant nozzle. The first one provides a velocity profile of a fully developed turbulent pipe flow, and the second has a uniform velocity profile at the nozzle exit. We observed a significant enhancement of the heat transfer characteristics of the cone orifice jets at Re=1.5×104. Using the cone orifice impinging jets enhanced the heat transfer rates as compared to the quadrant jet, even when the jets were supplied with the same operational power as the pipe jet. For instance, a maximum enhancement up to approximately 22% at r/do?0.5 is observed for α=15°. In addition, an increase of approximately 7% is attained as compared to when the pipe jet was used. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20243  相似文献   

5.
Highly under-expanded hydrogen jets releasing in quiescent air atmosphere are studied using highly resolved numerical simulations accounting for complex multicomponent molecular transport phenomena. In a first step of the analysis, the main overall features of the hydrogen jet structure are described and compared to those of the classical under-expanded air jet at the same nozzle pressure ratio (NPR). Even if the global flow topology remains quite similar in both cases (i.e., hydrogen and air discharges), the modification of both mean density and mean velocity gradients leads to different relative energy levels for each velocity component. The corresponding change of fluid properties mainly leads to an enhanced mixing at the jet periphery. In comparison to the air case, the turbulence development within the internal part of the under-expanded hydrogen jet surrounding the subsonic core also yields a different structure. While a significantly higher peak of streamwise turbulent stress is observed downstream of the reflected shock, the vorticity dynamics is dampened by viscous diffusion and velocity divergence (i.e., volumetric expansion) contributions. Then, the performance of the simplified Hirschfelder and Curtiss approximation of the multicomponent molecular diffusion phenomena is evaluated with respect to the detailed multicomponent transport representation, as deduced from the EGLIB library. The detailed representation of molecular phenomena is shown to have a significant influence on the estimated local levels of hydrogen mass flux, leading to a non-negligible alteration of the global jet structure.  相似文献   

6.
采用大涡模拟(large-eddy simulation,LES)的方法对T型管道内主管与支管不同动量比的流体混合过程的流动情况进行了数值模拟,采用时均值和均方根值来描述速度的平均大小和波动强度。通过改变主管和支管的速度比即动量比,将流体分为三类:碰撞射流、偏射流和壁面射流,研究其对速度的平均值和波动的影响,并研究其所反映的惯性力对流动的影响。该研究揭示了流体混合过程中动量比对波动的影响规律,对预测和校核管壁疲劳失效具有重要的指导意义。  相似文献   

7.
Optimization Study of a Coanda Ejector   总被引:1,自引:0,他引:1  
The Coanda effect has long been employed in the aerospace applications to improve the performances of variousdevices.This effect is the ability of a flow to follow a curved contour without separation and has well been util-ized in ejectors where a high speed jet of fluid emerges from a nozzle in the ejector body, follows a curved sur-face and drags the secondary flow into the ejector.In Coanda ejectors,the secondary flow is dragged in the ejec-tor due to the primary flow momentum. The transfer of momentum from the primary flow to the secondary flowtakes place through turbulent mixing and viscous effects.The secondary flow is then dragged by turbulent shearforce of the ejector while being mixed with the primary flow by the persistence of a large turbulent intensitythroughout the ejector.The performance of a Coanda ejector is studied mainly based on how well it drags thesecondary flow and the amount of mixing between the two flows at the ejector exit.The aim of the present studyis to investigate the influence of various geometric parameters and pressure ratios on the Coanda ejector per-formance.The effect of various factors,such as,the pressure ratio, primary nozzle and ejector configurations onthe system performance has been evaluated based on a performance parameter defined elsewhere.The perform-ance of the Coanda ejector strongly depends on the primary nozzle configuration and the pressure ratio.The mix-ing layer growth plays a major role in optimizing the performance of the Coanda ejector as it decides the ratio ofsecondary mass flow rate to primary mass flow rate and the mixing length.  相似文献   

8.
In this article, large eddy simulation (LES) is performed for a turbulent slot jet impingement heat transfer at a Reynolds number of 13,500 and a nozzle to plate spacing of 10. Various aspects of predicting a turbulent jet impinging flow in an optimum domain size and grid resolution for LES have been assessed. Two inflow conditions, one without any fluctuations and the other with fluctuations generated by the spectral synthesizer, were tested and comparisons of various mean flow, turbulence, and heat transfer data showed that LES without any inflow fluctuations provides good agreement with the corresponding experimental and numerical results reported in the literature. Further, various important dynamical flow structures have been visualized from the instantaneous computed data. Finally, mean flow and turbulence statistics have been presented in the wall jet region close to the stagnation point, which could be useful as data for validation of RANS-based turbulence models.  相似文献   

9.
In this paper, the feasibility of controlling the subsonic jet flow and its noise using pores of blind holes added on the nozzle inner wall is explored numerically. These pores are intended to introduce disturbances to the shear layer so as to change the flow mixing. This passive strategy has not been attempted so far.A convergent nozzle with a cylindrical extension is selected as the baseline case. Three nozzles with pores on the inner wall are set up. Validations of the numerical settings are carried out, then the compressible turbulent jets at the exit Mach number M j = 0.6 in the four nozzles are calculated by large eddy simulations (LES), while the radiated sounds are predicted by the FW-H acoustic analogy. The results show that the blind holes have produced some effects on weakening the turbulence intensity in the shear layer. Comparison reveals that both temporal and spatial correlations of the turbulent fluctuations in the modified cases are suppressed to some extent. Meanwhile, the porous nozzles are shown to suppress the pairing of vortices and enhance the flow mixing, and therefore, the development of shear layer and the fragmentation of large scale vortices are accelerated.  相似文献   

10.
Three theories of the liftoff of a turbulent jet flame were assessed using cinema-particle imaging velocimetry movies recorded at 8000 images/s. The images visualize the time histories of the eddies, the flame motion, the turbulence intensity, and streamline divergence. The first theory assumes that the flame base has a propagation speed that is controlled by the turbulence intensity. Results conflict with this idea; measured propagation speeds remains close to the laminar burning velocity and are not correlated with the turbulence levels. Even when the turbulence intensity increases by a factor of 3, there is no increase in the propagation speed. The second theory assumes that large eddies stabilize the flame; results also conflict with this idea since there is no significant correlation between propagation speed and the passage of large eddies. The data do support the “edge flame” concept. Even though the turbulence level and the mean velocity in the undisturbed jet are large (at jet Reynolds numbers of 4300 and 8500), the edge flame creates its own local low-velocity, low-turbulence-level region due to streamline divergence caused by heat release. The edge flame has two propagation velocities. The actual velocity of the flame base with respect to the disturbed local flow is found to be nearly equal to the laminar burning velocity; however, the effective propagation velocity of the entire edge flame with respect to the upstream (undisturbed) flow exceeds the laminar burning velocity. A simple model is proposed which simulates the divergence of the streamlines by considering the potential flow over a source. It predicts the well-established empirical formula for liftoff height, and it agrees with experiment in that the controlling factor is streamline divergence, and not turbulence intensity or large eddy passage. The results apply only to jet flames for Re<8500; for other geometries the role of turbulence could be larger.  相似文献   

11.
针对当前广泛应用于低排放燃气轮机燃烧室中的空气雾化喷嘴,采用大涡模拟(Large Eddy Simulation,LES)和流体体积法(Volume of Fluid,VOF)研究了其在流动模糊(Flow Blurring,FB)和流动聚焦(Flow Focusing,FF)模式下射流一次破碎过程的差异。结果表明:两种模式的射流一次破碎过程均可分为3个阶段,气液交界面波动阶段、射流发展阶段和射流破碎阶段;喷嘴内部回流区的演变决定了气液交界面的波动程度,流动模糊模式下射流在后两个阶段的径向速度和形态变化程度均远高于流动聚焦模式,气泡回流过程在其射流破碎阶段占据主导地位,液体管道内气泡分布位置与涡的强度呈正相关。  相似文献   

12.
A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations, superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large‐eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully developed stage in the domain. The performance of the method is verified by comparing the turbulence intensity and spectral distribution of the turbulent energy to the spectral distribution of turbulence generated by the IEC suggested Mann model. Second, the synthetic turbulence and wind shear is used as input for simulations with a wind turbine, represented by an actuator line model, to evaluate the development of turbulence in a wind turbine wake. The resulting turbulence intensity and spectral distribution, as well as the meandering of the wake, are compared to field data. Overall, the performance of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower‐order models. The conclusion is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The turbulent mixing characteristics of multiple jet flows in a micro can type combustor are investigated by means of large eddy simulation (LES). The micro combustor can be used for a micro gas turbine which is hybridized with solid oxide fuel cell. Attention is paid for a micro combustor having a circular disk baffle plate with a fuel injection nozzle in the center and oxidant injection holes allocated annularly. Downstream the baffle plate, a complex flow is produced from the interaction of multiple jet flows and study is made for three different configurations of the baffle plates resulting in different mixing pattern. From the results, it is substantiated that the turbulent mixing is promoted by complex flow fields caused by the jet flows and large vortical flow regions in the micro combustor. This is effective to accelerate the slow mixing between fuel and oxidant suffering from low Reynolds number in such a small combustor. In particular, the vortical flow region formed downstream the fuel jet core region plays an important role for rapid mixing coupled with another flow recirculation region. Discussion is made for the instantaneous and time and space averaged flow and passive scalar quantities which show peculiar turbulent flow and mixing characteristics corresponding to the different flow structures for each baffle plate shapes, respectively.  相似文献   

14.
张新铭  罗晴  洪光  凌娅 《热能动力工程》2012,27(3):301-306,390,391
利用计算流体软件建立了扇形喷嘴内部流场的三维数学模型,采用标准k-ε湍流模型对其进行了数值模拟,分析了喷嘴主要结构参数对流场速度分布、压力分布和射流速度的影响。结果表明:收缩角对喷嘴内部流场,尤其是射流速度有较大的影响,以13°~15°为最佳;出口长径比对射流流态和射流速度均有一定的影响,宜在2~4之间更有利于喷嘴的射流;V形切槽的夹角对射流出口速度的影响较明显,在15°~30°时有较好的集束性,但射流速度不高,30°~45°有较好的射流速度,45°~60°可获得高的射流速度,但集束性较差。  相似文献   

15.
The results of a laboratory investigation on the turbulence characteristics of a circular three-dimensional turbulent wall jet are presented. Measurements were taken up to 50 nozzle diameters using combined particle image velocimetry and planar laser induced fluorescence. The results showed that the induced turbulence was still evolving in the present range and had not achieved similarity. While the turbulent intensity for both velocity and concentration increased downstream, the turbulent mass transport showed a decline over distance for both the streamwise and spanwise directions, implying weakening dispersion from the jet core.  相似文献   

16.
为分析流线形喷嘴时射流泵的水力特性,采用紊流数值模拟方法,对流线形喷嘴时射流泵流场进行了三维计算。结果表明,随着流量比的增大,工作液流核区衰减得越慢,在喉管入口段工作液提升被吸液的区域有所减小;流量比越大喉管内紊动能最大值出现的位置会靠后且其数值会降低,两股液体混掺作用会变弱;喉管内压力随流量比的增大而逐渐降低且负压区范围有所扩大,最低负压发生在喉管壁处。同一流量比下,流线形喷嘴时射流泵的压力比略微高于圆锥形喷嘴时,但差别很小。流线形喷嘴时射流泵流场的计算成果,可为研究射流泵水力特性提供参考。  相似文献   

17.
The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales of the atmospheric turbulence. The length and velocity scales in the turbulence are largely responsible for the way in which wind turbine wakes meander as they convect downstream. The hypothesis of the present work is that appropriate turbulence scales can be extracted from the oncoming atmospheric turbulence spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non‐neutral atmospheric stability are approximated by the selection of input parameters. In order to isolate the effect of atmospheric stability, simulations of neutral and unstable atmospheric boundary layers using large‐eddy simulation are performed at the same streamwise turbulence intensity level. The turbulence intensity is kept constant by calibrating the surface roughness in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large‐eddy simulation coupled with an actuator line model and field measurements, where generally good agreement is found with respect to the velocity, turbulence intensity and power predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Burning hydrogen in conventional internal combustion (IC) engines is associated with zero carbon-based tailpipe exhaust emissions. In order to obtain high volumetric efficiency and eliminate abnormal combustion modes such as preignition and backfire, in-cylinder direct injection (DI) of hydrogen is considered preferable for a future generation of hydrogen IC engines. However, hydrogen's low density requires high injection pressures for fast hydrogen penetration and sufficient in-cylinder mixing. Such pressures lead to chocked flow conditions during the injection process which result in the formation of turbulent under-expanded hydrogen jets. In this context, fundamental understanding of the under-expansion process and turbulent mixing just after the nozzle exit is necessary for the successful design of an efficient hydrogen injection system and associated injection strategies. The current study used large eddy simulation (LES) to investigate the characteristics of hydrogen under-expanded jets with different nozzle pressure ratios (NPR), namely 8.5, 10, 30 and 70. A test case of methane injection with NPR = 8.5 was also simulated for direct comparison with the hydrogen jetting under the same NPR. The near-nozzle shock structure, the geometry of the Mach disk and reflected shock angle, as well as the turbulent shear layer were all captured in very good agreement with data available in the literature. Direct comparison between hydrogen and methane fuelling showed that the ratio of the specific heats had a noticeable effect on the near-nozzle shock structure and dimensions of the Mach disk. It was observed that with methane, mixing did not occur before the Mach disk, whereas with hydrogen high levels of momentum exchange and mixing appeared at the boundary of the intercepting shock. This was believed to be the effect of the high turbulence fluctuations at the nozzle exit of the hydrogen jet which triggered Gortler vortices. Generally, the primary mixing was observed to occur after the location of the Mach disk and particularly close to the jet boundaries where large-scale turbulence played a dominant role. It was also found that NPR had significant effect on the mixture's local fuel richness. Finally, it was noted that applying higher injection pressure did not essentially increase the penetration length of the hydrogen jets and that there could be an optimum NPR that would introduce more enhanced mixing whilst delivering sufficient fuel in less time. Such an optimum NPR could be in the region of 100 based on the geometry and observations of the current study.  相似文献   

19.
采用气液两相流大涡模拟对燃油雾化过程进行数值模拟.通过建立不同的计算边界研究了喷油器结构对喷孔内流及近喷孔区域燃油雾化特性的影响.在对比分析射流结构和喷孔内外流计算结果的基础上,讨论了射流初始扰动的产生机理及燃油雾化机理.根据计算结果发现:喷油器结构对喷孔内流有重要影响,实际喷油器的复杂结构会使燃油在离开喷孔前发展为湍流,湍流是导致初始扰动具有复杂频率和振幅组成的原因.边界突变是产生喷孔出口区域轴对称初始扰动的原因,该类型初始扰动具有单一的频率和振幅.  相似文献   

20.
Laser Doppler anemometry (LDA) measurements are reported on mean flow and turbulence in water as it flows downwards through a long vertical passage of annular cross‐section having an inner surface which can be uniformly heated and an outer one which is adiabatic. Under buoyancy‐opposed conditions, which can be achieved by heating the core and operating at a reduced mass flow rate, the flow near the inner surface is retarded, turbulent velocity fluctuations and turbulent shear stress are increased and the effectiveness of heat transfer is enhanced. When the influence of buoyancy is very strong, flow reversal occurs near the inner surface. Under such conditions, turbulence is produced very readily and the heat transfer process remains very effective, even when the Reynolds number is reduced to values at which the flow is laminar in the absence of heating. The measurements of turbulence in buoyancy‐opposed flow made in this study provide direct confirmation of the validity of the ideas currently used to explain the influences of buoyancy on mixed convection in vertical passages. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(1): 9–17, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20041  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号