首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以羧甲基-β-环糊精为表面修饰剂对Fe3O4纳米粒子进行包覆修饰,以环氧氯丙烷为交联剂,在β-环糊精的碱性溶液中通过Fe3O4纳米粒子表面进行的交联反应制备了交联β-环糊精聚合物/Fe3O4复合纳米颗粒.利用FTIR、XRD、TEM和TGA分剐对复合纳米颗粒的结构、形貌和尺寸进行了表征.结果表明,制备的复合纳米颗粒为近球形、核壳结构,粒径约为10~20nm,环糊精聚合物含量为29%,在水中的分散性良好.磁性能测试和包合性能测试表明,复合纳米颗粒为超顺磁性,对特定分子具有一定的包合能力,可用于靶向给药系统和特定物质分离的载体.  相似文献   

2.
在水介质中以羧基取代度为1.2的羧甲基-β-环糊精对Fe3O4磁性纳米颗粒直接进行包覆修饰制备了羧甲基-β-环糊精修饰Fe3O4磁性纳米颗粒,对制备颗粒的形态、结构和成分进行了表征并对其相关性能进行了研究。结果表明,制备的羧甲基-β-环糊精修饰Fe3O4磁性纳米颗粒为近球形,粒径在15~20nm之间,修饰上的羧甲基-β-环糊精约占颗粒总重的8.2%,颗粒为超顺磁性,质量比饱和磁化强度为68.7emu/g,在水中分散良好,载药的羧甲基-β-环糊精修饰Fe3O4磁性纳米颗粒在4h内具有较强的药物突释效应,随后呈现长达26h以上的药物缓释状态。  相似文献   

3.
Fe3O4纳米粒子的磷酸胆碱仿细胞膜修饰   总被引:1,自引:0,他引:1  
吴楠  金桥  计剑 《材料研究学报》2007,21(6):589-592
用水相共沉淀法制备了超顺磁的Fe3O4纳米粒子,并通过Michael加成将2-(甲基丙烯酰氧基)乙基-2-(三甲基氨基)乙基磷酸酯(MPC)共价键合到氨基化的Fe3O4纳米粒子表面.与未修饰MPC的Fe3O4纳米粒子相比,修饰了MPC的纳米粒子能大大减少蛋白质的非特异性吸附,延长了复钙化凝血时间,并具有良好的生物相容性.  相似文献   

4.
Fe3O4磁性纳米粒子表面修饰研究进展   总被引:1,自引:0,他引:1  
表面修饰Fe3O4磁性纳米粒子因具有优异的磁学特性、良好的生物相容性和丰富的化学反应可选择性,在生物医药领域如磁共振成像、组织修复、免疫测定、热疗、药物传递和细胞分离中显示了巨大的应用潜力.Fe3O4磁性纳米粒子的表面修饰主要包括以下3类:①有机小分子修饰,主要是偶联剂和表面活性剂修饰;②有机高分子修饰,包括天然生物大分子、合成高分子以及两者复合修饰;③无机纳米材料修饰,主要是SiO2、Au和Ag修饰.并就这三大方面的研究进展做了综合概述.  相似文献   

5.
油酸钠对油相法制备的Fe3O4纳米粒子的表面改性研究   总被引:1,自引:0,他引:1  
以常见的表面活性剂油酸钠作为表面改性剂,通过油酸根离子中的脂肪烃链与高温油相法制备的Fe3O4纳米粒子表面的亲油性基团之间的范德华力作用,将分散在油相中的Fe3O4纳米粒子转移到水相中.研究了油酸钠浓度、油相中Fe3O4纳米粒子含量、pH值及温度等条件对改性结果的影响;用穆斯堡尔谱仪(Moessbauer)、透射电镜(TEM)、傅立叶红外光谱(FT-IR)等方法对改性前后的样品进行了表征.结果表明:本方法可有效地将油相法制备的Fe3O4纳米粒子从油相中转移到水相.当油酸钠浓度为3mmol/L、Fe3O4纳米粒子在正己烷中浓度为12.28mg·mL^-1、pH为8.6且温度为60℃时,转移率最高可达86%,改性后粒子在水相中的含量最高可达10.5mg·mL^-1;改性后磁性粒子在水相中含量较低时,能够稳定分散较长时间.  相似文献   

6.
用化学共沉淀法制备Fe3O4,用静电吸附法制备Fe3O4@Au复合磁性纳米材料,用种子生长法制备出Fe3O4@Au@Ag复合磁性纳米材料。利用紫外一可见吸收光谱研究复合磁性纳米颗粒的光谱特性,以结晶紫为探针分子检测磁性纳米颗粒的表面增强拉曼散射光谱。实验结果表明:复合磁性纳米颗粒既具有磁性又具有贵金属光谱特性;复合磁性纳米颗粒能很好地改善Fe3O4磁性纳米颗粒的表面增强拉曼散射活性。  相似文献   

7.
制备了尺寸为30nm,具有磁响应的单分散Fe3O4@SiO2/Au核壳纳米颗粒,并研究其光学性质。首先利用热分解法制备油酸修饰的Fe3O4纳米粒子,再用反相微乳法制备Fe3O4@SiO2纳米粒子,最后利用表面修饰的氨基还原性,获得Fe3O4@SiO2/Au核壳复合纳米颗粒。分别用TEM、XRD、Zeta电位与粒度分析仪对产物形貌、结构、表面电位和粒径分布进行表征,用紫外-可见分光光度计对光学性质进行了测试。  相似文献   

8.
磁性羧甲基化壳聚糖纳米粒子的制备与表征   总被引:1,自引:1,他引:0  
以化学共沉淀法制备了Fe3O4纳米粒子,壳聚糖经羧甲基化改性后接枝在Fe3O4颗粒表面,得到了磁性羧甲基化壳聚糖(Fe3O4/CMC)纳米粒子.利用透射电镜(TEM)、X射线衍射(XRD)、傅立叶红外光谱(FT-IR)及磁性测试对产物进行了表征.TEM表明Fe3O4纳米粒子被CMC包覆,粒径约10 nm;XRD分析表明复合纳米粒子中磁性物质为Fe3O4;FT-IR表明壳聚糖发生羧甲基反应以及在Fe3O4表面的接枝反应.Fe3O4/CMC纳米粒子具有超顺磁性,比饱和磁化强度25.73 emu/g,有良好的磁稳定性.  相似文献   

9.
Fe3 O4纳米粒子作为纳米材料的一种,由于其独特的光、电、磁、热性能而备受关注.综述了近几年Fe3 O4纳米粒子的制备方法,如共沉淀法、热分解法、微乳液法、水热法、氧化沉淀法、超声辅助法、溶胶-凝胶法等,同时论述了目前较受关注、研究较多的Fe3O4纳米粒子的表面修饰,以及水、油基Fe3O4纳米粒子的相转移,并展望了其进一步的研究.  相似文献   

10.
以丙烯酰胺为单体,采用原位聚合法制备了Fe3O4/聚丙烯酰胺纳米磁粒(Fe3O4/PAM);利用胺基与金的相互作用,借助自组装法在Fe3O4/PAM表面组装金胶体制备了草莓型纳米金磁颗粒(Fe3O4/PAM/Au);用TEM、VSM、UV-vis对其进行了表征,并考察了表面修饰核酸探针的金磁颗粒对核酸靶分子的分离能力。结果表明,Fe3O4/PAM/Au粒子的粒径为36~56nm,具有超顺磁性,饱和磁化强度为31.2emu/g,分散在磷酸盐缓冲液中的Fe3O4/PAM/Au完全磁分离的时间为6min。修饰核酸探针的Fe3O4/PAM/Au粒子可以借助核酸杂交作用分离核酸靶分子,分离能力为118pmol/mg。  相似文献   

11.
曾宪伟  赵东林 《功能材料》2004,35(Z1):605-608
用水解沉淀法制备纳米Fe3O4,然后在其溶液中原位合成聚苯胺,得到纳米Fe3O4/聚苯胺复合粒子.通过XRD、TEM、JDM等测试对纳米复合粒子的形态、结构及磁性能进行了研究.实验制备的纳米Fe3O4粒子粒径为30nm左右,在其表面沉积聚苯胺后,复合粒子的粒径达到了50nm左右.与纳米Fe3O4粒子相比,纳米Fe3O4/聚苯胺复合粒子的XRD峰形变得更为明锐.纳米复合粒子的磁性能表现出软磁性,与纳米Fe3O4粒子相比,矫顽力减小为0,这可以大大减小材料的磁滞损耗和退磁难度,性能得到改善.  相似文献   

12.
采用反相乳液聚合法,由改性磁性Fe3 O4纳米粒子、β-环糊精(β-CD)、丁二酸酐(SA)制备了具有pH值敏感的β-环糊精磁性微球;通过红外光谱、透射电镜对微球进行了结构表征和形貌观察,并探讨了微球的pH值敏感性和磁响应性能.结果表明:制备的β-CD微球为核壳结构,粒径为20μm左右,具有良好的磁性和pH值敏感性.  相似文献   

13.
以乙酰丙酮铁作为铁源,三甘醇作为溶剂,采用热分解法制备了原始以及酸化后的多壁碳纳米管负载铁氧体纳米粒子的复合材料。并用扫描电子显微镜(TEM)、X射线衍射(XRD)、穆斯堡尔谱等分析了材料的微观结构和特性。结果表明,铁氧体纳米粒子均匀地修饰在碳纳米管表面,没有明显团聚现象产生,酸化后的碳纳米管表面生成的纳米粒子中包含了Fe3O4与Fe2O3两种粒子。碳纳米管经酸化后,其表面生成了许多缺陷,缺陷处的活泼电子更容易与生成的Fe3O4纳米粒子的外层电子之间进行快速的电子交换,使得Fe3O4纳米粒子中的FeⅡ被部分氧化,使生成的铁氧体纳米粒子更多地表现为Fe2O3的特性。  相似文献   

14.
超顺磁性Fe3O4纳米颗粒的制备及修饰   总被引:2,自引:0,他引:2  
李文章  李洁  丘克强  曾恒志 《功能材料》2007,38(8):1279-1281,1286
利用2-吡咯烷酮和乙酰丙酮铁为原料制备出Fe3O4磁性纳米粒子,选择偶联剂γ-氨丙基三乙氧基硅烷(NH2C3H6Si(OC2H5)3)对磁性材料进行了表面修饰.经XRD、TEM、VSM、FT-IR测试结果表明,制备出的Fe3O4磁性纳米粒子粒径均一(8~10nm)、结晶度高、磁响应较强;通过控制反应回流时间,可以改变粒子的大小;经表面改性以后,-OH、-NH、-NH2、-C-O、-C-OH等多种功能基团负载到磁性Fe3O4纳米粒子表面,增强了微球的生物相容性.  相似文献   

15.
采用化学共沉淀法合成磁性Fe3O4纳米粒子,并且利用正硅酸乙酯(TEOS)的水解和凝聚作用在Fe3O4纳米粒子表面沉积包覆一层SiO2,合成核壳式的Fe3O4@SiO2复合纳米粒子。以Fe3O4@SiO2纳米粒子为基体,将(3-巯基丙基)三乙氧基硅烷嫁接到纳米粒子表面,制备出巯基功能化的纳米材料,将其应用于对重金属离子...  相似文献   

16.
黄泓轲  王明贤  杨华 《硅谷》2012,(15):123-124
利用化学共沉淀法合成磁性Fe3O4微粒,使用硅烷化试剂APTES(3-氨丙基三乙氧基硅烷)在乙醇分散的Fe3O4微粒表面进行氨基化修饰,并通过酸碱滴定法测得氨基化Fe3O4微粒表面的氨基含量为0.15mmol/g。采用Frens法合成粒径在20nm左右的纳米级胶体金,进一步利用Au-N键将金纳米微粒组装到Fe3O4微粒表面。可见光吸收光谱分析表明金磁微粒在520nm-550nm处表现出由于Au存在而产生的特征吸收峰,同时原子吸收光谱分析也获得金磁微粒的Fe3O4:Au元素构成比例为1:0.97。  相似文献   

17.
采用可逆加成-断裂链转移(RAFT)聚合,合成了两水亲性嵌段共聚物聚(4乙烯基吡啶)-b-聚(甲基丙烯酸聚乙二醇酯)(P4VP-b-PMAPEG)和聚(丙烯酸)-b-聚(甲基丙烯酸聚乙二醇酯)(PAA-bPMAPEG),通过多元醇还原法制备了两水亲性嵌段共聚物修饰的Fe3O4磁纳米粒子。并利用红外光谱(FT-IR)、X射线粉末衍射(XRD)、透射电镜(TEM)对磁纳米粒子进行表征。结果表明,嵌段共聚物修饰的Fe3O4磁纳米粒子为大小均匀的球状颗粒,其粒径在10~20nm。振动样品磁强计测试结果显示,在室温、外加磁场下,经PAA-b-PMAPEG及P4VP-bPMAPEG修饰的Fe3O4磁纳米粒子的饱和磁化强度分别为63.1A·m2/kg和50.2A·m2/kg,该磁纳米粒子均呈现超顺磁性。  相似文献   

18.
本文通过层层自组装技术(1ayer-by—layer,LBL)成功制备了CdTe@Fe3O4磁性荧光复合纳米粒子,并对其特性和应用进行了讨论.首先,采用化学共沉淀法,以NaOH为沉淀剂,Fe^2+和Fe^3+物质的量的比为1:2.在50℃水相中电磁搅拌30min,制备出具有磁性的纳米Fe3O4,然后表面修饰1,6-己二胺.通过透射电镜(transmission electron microscopy,TEM)对其进行观察,粒径在10nm左右.核壳cdTe@Fe3O4复合功能纳米粒子的合成表明:Fe3O4和cdTc物质的量的比为1:3,pH=6.0,温度30℃,反应时间30min为其最佳合成条件.通过TEM、紫外和荧光光谱对合成的纳米粒子分别进行了表征.cdTe@Fe3O4粒径在12~15nm,最大发射波长从530nm红移到570nm,而最大吸收波长则从530nm红移到535mm.结果表明,磁性Fe3O4表面成功覆盖了CdTe壳层.核壳型CdTe@Fe3O4磁性荧光复合纳米粒子的应用能够实现对DNA进行简便快捷的标记、传感和分离.  相似文献   

19.
采用改进的高温分解法制备单分散Fe3O4纳米粒子,以正硅酸乙酯为硅源在其表面包覆SiO2,以N-氨乙基-γ氨丙基三甲氧基硅烷为改性剂对复合粒子进行表面氨基化修饰,制备出氨基化磁性复合纳米粒子Fe3O4@SiO2—NH2。利用红外光谱(FT-IR)、透射电镜(TEM)、X射线衍射(XRD),振动样品磁强计(VSM)等手段对复合粒子进行了表征,并研究其作为吸附剂在不同条件下对Pb2+的吸附性能。表征结果显示,所制备的复合粒子具有核壳结构,粒径均匀大约在50nm,粒子表面拥有丰富的氨基功能基团;复合粒子饱和磁化强度为69.50A.m2/kg,具有超顺磁性。吸附实验表明所制备的氨基化磁性复合纳米粒子对Pb2+具有较大的吸附容量,是一种能够有效处理含铅废水的吸附材料。  相似文献   

20.
氧化硅包裹四氧化三铁微球的制备及表征   总被引:1,自引:0,他引:1  
在室温下,采用H2O2氧化Fe(OH)2悬浮液的方法制备得到了粒径23nm左右的磁性纳米粒子,经X射线衍射检测制备得到的是Fe3O4磁性纳米粒子,粒子的饱和磁化强度为59.05emu/g。先用硅烷偶联剂KH560修饰Fe3O4,提高粒子在乙醇溶液中的单分散性,在此基础上采用溶胶凝胶法通过TEOS水解制备得到分散性佳、尺寸均匀、粒径为25nm左右核壳结构的氧化硅包覆Fe3O4纳米粒子的磁微球。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号