首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When subjected to long‐period ground motions, many existing high‐rise buildings constructed on plains with soft, deep sediment layers experience severe lateral deflection, caused by the resonance between the long‐period natural frequency of the building and the long‐period ground motions, even if they are far from the epicenter. This was the case for a number of buildings in Tokyo, Nagoya, and Osaka affected by the ground motions produced by the 2011 off the Pacific coast of Tohoku earthquake in Japan. Oil‐dampers are commonly used to improve the seismic performance of existing high‐rise buildings subjected to long‐period ground motion. This paper proposes a simple but accurate analytical method of predicting the seismic performance of high‐rise buildings retrofitted with oil‐dampers installed inside and/or outside of the frames. The method extends the authors' previous one‐dimensional theory to a more general method that is applicable to buildings with internal and external oil‐dampers installed in an arbitrary story. The accuracy of the proposed method is demonstrated through numerical calculations using a model of a high‐rise building with and without internal and external oil‐dampers. The proposed method is effective in the preliminary stages of improving the seismic performance of high‐rise buildings.  相似文献   

2.
3.
A series of large‐scale shaking table tests are conducted on tall buildings with and without energy dissipation devices on soft soils in pile group foundations, representing pile‐soil‐structure interaction (PSSI) system and the corresponding fixed‐base situations. The superstructure is a 12‐story reinforced concrete (RC) frame. The dynamic characteristics of the test models show that the frequencies decrease and the damping ratio increase in PSSI system by comparison with the fixed‐base structures. The mode shapes of PSSI system are different from that under fixed‐base condition, and the mode shapes of structure without dampers change greater than that with energy dissipation devices under various white noises. An improved method for structural dynamic characteristics, considering the impedance function of piles, is developed to address the issue of modal parameters with PSSI effect. In addition, the structural dynamic parameters of the large‐scale shaking table tests are identified using the modification method and other regulation methods, demonstrating that the improved approach is highly accurate and effective. Subsequently, a design procedure for viscous dampers of structures with PSSI effect is presented based on the dynamic characteristics of the system. Finally, the dynamic responses of the structure with viscous dampers in the practical engineering are decreased effectively, indicating the good performance of designed viscous dampers. The numerical results also show that the damping efficiency of interstory drift is larger than the acceleration and interstory shear force. Therefore, the improved modal parameters method, validated through a series large‐scale shaking table tests, is applicable for identifying dynamic characteristics of pile‐soil‐structure with energy dissipation devices system. The design procedure of viscous dampers, proved by a reinforced concrete frame structure located on a practical Shanghai soft site, can be employed to design the viscous dampers considering seismic PSSI effect.  相似文献   

4.
Damped outriggers for tall buildings draw increasingly attentions to engineers. With a shaking table test, two models of a high‐rise steel column‐tube structure are established, one with outriggers fixed to the core and hinged at the columns, whereas the other's cantilevering outriggers are connected to columns by viscous dampers. According to their dynamic properties, five earthquake waves are selected from the Ground Motion Database of Pacific Earthquake Engineering Research Center (PEER), and two artificial waves are generated by software SIMQKE_GR. Under various peak ground accelerations (PGAs), nonlinear time‐history analysis is applied to compare structural elastic seismic responses, including accelerations, inter‐story drifts, base shear force, damper's response and additional damping ratios. It is concluded that under minor earthquakes, accelerations, inter‐story drifts and base shear force of structure with damped outriggers are larger than or nearly equal to those of the one with fixed outriggers, and the viscous dampers hardly work. But as PGA increases, the contrary situation happens, and the effect of viscous dampers is enhanced as well. The additional damping ratio reaches around 4% under mega earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The seismic design of optimal damped outrigger structures relies on the assumption that most of the input energy will be absorbed by the dampers, whilst the rest of the structure remains elastic. When subjected to strong earthquakes, nevertheless, the building structure may exhibit plastic hinges before the dampers begin to work. In order to determine to which extent the use of viscously damped outriggers would avoid damage, both the host structure's hysteretic behaviour and the dampers' performance need to be evaluated in parallel. This article provides a parametric study on the factors that influence the distribution of seismic energy in tall buildings equipped with damped outriggers: First, the influence of outrigger's location, damping coefficients, and rigidity ratios core‐to‐outrigger and core‐to‐column in the seismic performance of a 60‐story building with conventional and with damped outriggers is studied. In parallel, nonlinear behaviour of the outrigger with and without viscous dampers is examined under small, moderate, strong, and severe long‐period earthquakes to assess the hysteretic energy distribution through the core and outriggers. The results show that, as the ground motion becomes stronger, viscous dampers effectively reduce the potential of damage in the structure if compared to conventional outriggers. However, the use of dampers cannot entirely prevent damage under critical excitations.  相似文献   

6.
The resonant behaviour of base‐isolated high‐rise buildings under long‐period ground motions is investigated. The long‐period ground motions are known to be induced by surface waves. While the acceleration amplitude of such long‐period ground motion is small, the velocity amplitude is fairly large. It is expected that high‐rise buildings and base‐isolated buildings with long fundamental natural periods are greatly influenced by these long‐period ground motions. Especially base‐isolated high‐rise buildings with friction‐type bearings may have remarkable mechanical characteristics unfavourable for these long‐period ground motions. The purpose of this paper is to reveal that the long‐period ground motions recorded in Japan have the intensity to make base‐isolated high‐rise buildings in resonance with long‐period components and that careful treatment is inevitable in the structural design of these base‐isolated high‐rise buildings. It is pointed out that the friction‐type bearings are effective in general in avoiding the resonance with ground motions with a narrow‐range frequency characteristic, but are dangerous for ground motions with a wide‐range frequency characteristic in the long period range. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Amplifying devices increase the displacements and the velocities that are transferred to the dampers attached to them, enabling the use of viscous dampers with lower damping coefficients in order to achieve optimal structural behavior. A known design algorithm for such devices simplifies the real behavior of the amplifier by assuming small displacements and velocities, which are transferred to the damper. This algorithm is likely to be less effective under strong earthquakes that induce large displacements and velocities. This paper discusses high‐efficiency amplifiers that have large amplifying ratios and proposes an improved method, which takes into account more accurate values of the displacements and velocities transferred to the damper, in order to obtain an enhanced structural response to earthquakes. The efficiency of the proposed method is demonstrated in a numerical simulation of a shear framed eight‐story reinforced concrete viscous damped structure. The simulation compares the behavior of the structure designed according to the simplified and to the proposed algorithms. It shows that for relatively large amplifying ratios and for drifts induced by strong earthquakes the proposed methodology yields better results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
以某钢筋混凝土框架结构工程实例为研究对象,选取与场地条件相匹配的地震动作为激励,在SAP2000程序中计算了该结构在多遇和罕遇地震作用下的非线性动力反应,并在框架结构模型中分别设置屈曲约束支撑和黏滞阻尼器。通过试算确定消能减震装置的参数,使得两种消能减震结构在多遇地震作用下的位移减震率均为40%。在此条件下,对比分析了结构的层间位移角、楼层加速度、基底剪力、柱轴力、塑性铰分布和各层阻尼器的工作状态。分析表明:在多遇地震作用下,屈曲约束支撑增大了结构的加速度响应,而黏滞阻尼器能够减小结构的加速度响应;在罕遇地震作用下,二者均能有效控制楼层的加速度响应,而屈曲约束支撑的位移减震效果更好,但黏滞阻尼器对框架柱内力的减少效果更为显著。  相似文献   

9.
Modern traditional‐style steel (MTS) structure is an innovative architecture structure that is widely used in China. This paper explores the possibility of using viscous damper, which can be conveniently installed between beam and column, to replace “sparrow brace” at beam–column joints to improve its seismic capability. Three 1/2.6 scaled MTS double beam–column joints, one without viscous damper and two with viscous damper, were fabricated and tested under dynamic cyclic loading. The results indicated that the primary failure modes were cracking of base metal and local bucking at the beam ends. The hysteretic curve of specimens with viscous dampers was more plump than the common specimen without viscous dampers, indicating better energy dissipation capacity. The displacement ductility ratio was about 1.79–1.96, indicating the viscous damper has little effect on the ductility, whereas in plastic stage, the energy dissipation of specimens and viscous damper increased rapidly, indicating great energy dissipating function of viscous damper. Meanwhile, the results also proved that finite element analysis may stimulate and predict the mechanical behavior of MTS double beam joints with viscous dampers.  相似文献   

10.
A mega‐frame with a vibration control substructure (MFVCS) is a tuned mass damper system that converts substructures into a tuned mass. In this study, a kind of MFVCS using lead–rubber bearings (LRBs) to connect the vibration control substructure to the mega‐frame was proposed. To investigate the damping effect of this MFVCS, a series of shaking table tests were conducted, and the seismic responses of the MFVCS were compared with those of the traditional mega‐frame structure (TMFS). The results show that the seismic responses of the MFVCS are clearly smaller than those of the TMFS; additionally, the proposed MFVCS can provide a sufficient damping effect under different ground motions. Finite element (FE) models of the TMFS and MFVCS were established and validated by experimental results. Finally, the simulation results adopting different LRB models (equivalent linear and nonlinear elements) were compared, and the results indicate that simulation results can be obtained with greater accuracy from the FE model with a nonlinear LRB model than that with a linear LRB model.  相似文献   

11.
现有消能减震结构的设计方法在确定减震关键参数及其空间分配时需要繁琐的迭代试算.为解决此问题,基于减震结构消能减震装置的"移位"原理,提出了减震结构的系统化设计方法,可高效地实现减震结构中阻尼器的参数确定与分配.基于广义单自由度理论提出了减震主自由度的概念,进而发现了减震结构中消能减震装置的"移位"原理,即若要将减震装置...  相似文献   

12.
The use of a single set of outriggers equipped with oil viscous dampers increases the damping ratio of tall buildings in about 6–10%, depending on the loading conditions. However, could this ratio be further increased by the addition of another set of outriggers? Should this additional set include dampers too? To answer these questions, several double damped outrigger configurations for tall buildings are investigated and compared with an optimally designed single damped outrigger, located at elevation 0.7 of the total building's height (h). Using free vibration, double outrigger configurations increasing damping up to a ratio equal to the single‐based optimal are identified. Next, selected configurations are subjected to several levels of eight ground motions to compare their capability for avoiding damage under critical excitations. Last, a simplified economic analysis highlights the advantages of each optimal configuration in terms of cost savings. The results show that, within the boundaries of this study, combining a damped outrigger at 0.5h with a conventional outrigger at 0.7h is more effective in reducing hysteretic energy ratios and economically viable if compared with a single damped outrigger solution. Moreover, double damped outrigger configurations for tall buildings exhibit broader display of optimal combinations, which offer flexibility of design to the high‐rise architecture.  相似文献   

13.
The tuned mass damper inerter (TMDI) is an enhanced variant of the tuned mass damper (TMD) that benefits from the mass‐amplification effect of the inerter. Here, a multi‐TMDI (MTMDI) system (comprising more than one TMDI) linking two adjacent high‐rise buildings is presented as an unconventional seismic protection strategy. The relative acceleration response of the adjacent structures triggers large reaction forces of the inerter devices in the MTMDI, which in turn efficiently improve the seismic performance of the two buildings. By addressing a real project of two adjacent high‐rise buildings connected by two corridors equipped with the proposed MTMDI system, the displacement‐, interstory drift‐, and acceleration‐based parametric optimizations are separately performed by employing Nondominated Sorting Genetic Algorithm II (NSGA‐II) under 44 ground motions from the FEMA P695 far‐field record set. It is found that the frequency content of the seismic input has strong impact on the MTMDI mitigation performance. Adopting realistic mass ratio constraints, the optimally designed MTMDI outperforms both conventional MTMD and single TMDI in acceleration control, while it is not much effective in mitigating the displacement response due to the highly flexible nature of the high‐rise buildings, in contrast to other literature studies generally focused on low‐to‐medium rise buildings.  相似文献   

14.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

15.
Seismic response of a base‐isolated building equipped with single tuned mass damper (STMD), multiple tuned mass dampers (MTMDs), and distributed multiple tuned mass dampers (d‐MTMDs) under real earthquake ground motions is investigated. Numerical study is carried out using analytical models of five‐, 10‐, and 15‐storey base‐isolated buildings equipped with the STMD, MTMDs, and d‐MTMDs. The buildings are modeled as shear‐type structure with a lateral degree of freedom at each floor level, and the buildings are isolated using the laminated rubber bearing, lead‐core rubber bearing, friction pendulum system, and resilient‐friction base isolator. The coupled differential equation of motion for the buildings are derived and solved in the incremental form using Newmark's step‐by‐step method of integration. From the numerical study conducted, it is concluded that installing a tuned mass damper at each floor level of a base‐isolated building reduces the structural response in terms of top floor acceleration and bearing displacement. It is found that installing the MTMDs and d‐MTMDs are significantly beneficial in reducing top floor acceleration as compared with the STMD. Further, almost comparable reduction in the bearing displacement could be obtained by installing the STMD, MTMDs at top, and d‐MTMDs in the base‐isolated buildings. The d‐MTMDs are more beneficial as compared with the STMD and MTMDs as otherwise huge controller mass can now be divided and distributed on different floor levels.  相似文献   

16.
为研究黏滞阻尼器对双柱摇摆桥墩在近场脉冲型地震作用下的减震作用,基于摇摆刚体假定和拉格朗日方程,对采用黏滞阻尼器的双柱摇摆桥墩进行实例分析、参数分析和抗倒塌能力分析。研究结果表明:黏滞阻尼器可减小双柱摇摆桥墩的地震位移反应,且作为速度型阻尼器,其在近场脉冲型地震作用下的减震效果比远场地震更为显著;在近场脉冲型地震作用下,随着黏滞阻尼器的无量纲阻尼常数(λ)的增大和阻尼指数(nv)的减小,桥墩位移反应随之变小,当阻尼器失效位移大于120mm时桥墩峰值位移反应无显著变化;黏滞阻尼器的减震作用可有效提高双柱摇摆桥墩在近场脉冲型地震作用下的抗倒塌能力,λ越大和nv越小,桥墩的抗倒塌能力越强。  相似文献   

17.
One way of minimizing the excitation of a structure under dynamic loading is to include viscous dampers, both within the structure and connected to points of support outside the structure. However, the magnitude of the damping required and the position of the damper is not always easily determined. For multi-degree-of-freedom structures, some modes may not be damped while others may be excessively damped. Excessive damping of one mode may also precipitate other modes of vibration. This paper describes an analysis based on the frequency response method for studying the dynamic response of framed structures under both harmonic and random excitation. Studies of a multi-storey frame structure and a cable stayed pedestrian footbridge are described. These studies include investigations of the location and magnitude of the dampers.  相似文献   

18.
The Tall Building Initiative project of Pacific Earthquake Engineering Research Center has been expanded to investigate the seismic performance and possible retrofit of existing tall buildings. A candidate 35‐story steel building with representative details from the early 1970s was analyzed following several guidelines, which revealed a wide range of potential inadequacies. Thus, a two‐level retrofit approach was examined that focused on achieving the collapse prevention limit state under the major basic safety earthquake (BSE‐2E) hazard level prescribed by ASCE 41. This paper focused on a Level‐2 retrofit that used fluid viscous dampers to augment Level‐1 retrofits. For this approach, feasible damper locations and overall effective damping ratios were first evaluated through a series of preliminary studies, and then a two‐phase design method was used to refine the distribution and mechanical properties of the dampers. Thorough assessments of the refined design were carried out following several design guidelines, including ASCE 41, FEMA 351, and FEMA P‐58. The results indicated that the proposed retrofit method of using fluid viscous dampers could achieve the retrofit goal and provide a cost‐effective means of improving the structural behavior and reducing economic losses in a major seismic event.  相似文献   

19.
Friction dampers, whose configuration is optimized on the basis of the probabilistic seismic loss associated with a building's damage due to ground motion, were utilized in this study to optimally retrofit a 15‐story steel structure. In line with the concept of performance‐based earthquake engineering (PBEE), a decision‐making procedure based on the monetary seismic loss was incorporated for optimizing the dampers' configuration. A nonlinear numerical model was initially established for representing the structure. In this regard, a brace–damper system was modeled with the buckling of brace elements being addressed accurately and by representing the friction damper's load–displacement relationship on the basis of laboratory evidences. By monitoring the structural deformations in two different response levels, two patterns were established for the distribution of the dampers' strengths throughout the structure, and a number of retrofit alternatives were proposed subsequently. By using incremental dynamic analysis and following the PBEE methodology, the annualized loss (AL), which accounts for all potential damage states in the building and a broad range of seismic intensities, was calculated for each alternative frame. The AL is regarded as a decision variable upon which the best damper configuration is selected. Revealing conclusions were finally made regarding optimal configuration of the damper–brace system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
提出附设黏滞阻尼器的结构设计流程,以昆明某幼儿园工程为例,通过在结构上附设黏滞阻尼器,对比原结构和消能减震结构在地震作用下的最大层间位移角和最大层间位移,研究了高地震烈度区框架结构附设非线性黏滞阻尼器后的减震效果。结果表明:黏滞阻尼器对结构减震效果明显,合理布置黏滞阻尼器后,框架结构的抗震性能满足规范要求。研究为高地震烈度区附设黏滞阻尼器的框架结构抗震设计提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号