where W is the wear volume (depth), K the wear coefficient, P the contact pressure, S the slippage.And then the stress intensity factor for cracking due to fretting fatigue was calculated by using contact pressure and frictional stress distributions, which were analyzed by the finite element method. The SN curves of fretting fatigue were predicted by using the relationship between the calculated stress intensity factor range (ΔK) with the threshold stress intensity factor range (ΔKth) and the crack propagation rate (da/dN) obtained using CT specimens of the material. And then fretting fatigue tests were conducted on Ni–Cr–Mo–V steel specimens. The SN curves of our experimental results were in good agreement with the analytical results obtained by considering fretting wear process. Using these estimation methods we can explain many fretting troubles in industrial fields.  相似文献   

3.
The effect of hydrogen gas environment on fretting fatigue strength of materials used for hydrogen utilization machines   总被引:1,自引:0,他引:1  
Masanobu Kubota  Yasuhiro Tanaka 《Tribology International》2009,42(9):1352-1359
The objective of this study is the characterization of the fretting fatigue strength in a hydrogen gas environment. The test materials were a low alloy steel SCM435H, super alloy A286 and two kinds of austenitic stainless steels, SUS304 and SUS316L. The test was performed in hydrogen gas at 0.12 MPa absolute pressure. The purity of the hydrogen gas was 99.9999%. The fretting fatigue limit was defined by the fretting fatigue strength at 30 million cycles. For all materials, the fretting fatigue strength in the hydrogen gas environment increased in the short-life region. However, the fretting fatigue strength in the hydrogen gas environment decreased in the long-life region when exceeding 10 million cycles except for SCM435H, while there was no reduction in the fretting fatigue strength in air between 10 and 30 million cycles. The reduction rate was 18% for A286, 24% for SUS304 and 7% for SUS316L. The tangential force coefficient in the hydrogen gas environment increased when compared to that in air. It can be estimated that this increase is one of the causes of the reduced fretting fatigue strength found in a hydrogen gas environment. In order to discuss the extension of the fretting fatigue life in hydrogen gas observed at the stress level above the fretting fatigue limit in air, continuous measurement of the fretting fatigue crack propagation was performed in a hydrogen gas environment using the direct current potential drop method. As a result, it was found that the extension of the fretting fatigue life was caused by the delay in the start of the stable crack propagation.  相似文献   

4.
Fretting fatigue strength of SCM435H steel and SUH660 heat‐resistant steel in hydrogen gas environment     
M. Kubota  Y. Tanaka  Y. Kondo 《Lubrication Science》2008,14(3):177-191
Utilisation of hydrogen is expected to be one of the solutions against the problems of exhaustion of fossil fuels and reduction of carbon dioxide emissions. Evaluation of the materials for hydrogen utilisation machines is required. The objectives of this study are the characterisation of fretting fatigue strength of low‐alloy steel SCM435H and heat‐resistant steel SUH660, and the validation of effectiveness of nitriding in hydrogen gas environment. Fretting fatigue tests were conducted up to 3 × 107 cycles. The decrease of fretting fatigue strength in hydrogen gas environment was found at the long‐life region exceeding 107 cycles. The amount of the decrease of the fretting fatigue limit at 3 × 107 cycles was 11% for SCM435H and 15% for SUH660. However, at the stress level above the fretting fatigue limit in air, the finite life in hydrogen gas increased more than that in air. The cause of extension of fatigue life was the delay of start of stable crack propagation. Fretting fatigue crack, which was smaller than 200 µm in length, consumed approximately 60% of the fatigue life in hydrogen gas environment. Fretting fatigue crack was steadily propagated after the test was started in air. Observations of the fretted surface showed that the fretting wear process in hydrogen gas environment was dominated by adhesion. Tangential force coefficient was higher in hydrogen gas environment than that in air. It is considered that the adhesion has a close relation to crack initiation in hydrogen gas environment, and as a result, the failure of specimen occurred at a lower stress level comparing the fretting fatigue limit in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Effect of notch geometry on the fatigue strength and critical distance of TC4 titanium alloy     
Xuteng Hu  Xu Jia  Zhenqiang Bao  Yingdong Song 《Journal of Mechanical Science and Technology》2017,31(10):4727-4737
Studying the effect of different geometric features of machined notch on the fatigue strength and critical distance has an important guiding role to understand the critical distance size effect and to predict the HCF strength of turbine engine fan blades after FOD. Systematically experimental investigations of geometrical characteristic effects on the 106 cycle fatigue strength and critical distance for TC4 machined notched plates at stress ratios of R = 0.1 have been conducted. 123 specimens, including unnotched plates and three different types of notched plates (V-notches, U-notches and C-notches) with various notch root radii, depths and angles have been considered. The results indicate that the notch with small radius can significantly lead to high stress concentration and greatly reduce the HCF strength, while the notch angle and notch depth can affect the HCF strength to a certain extent. The K t related model does not apply to describe the critical distance size effect perfectly. The critical distance has linear relationship with the notch root radius but no significant correction with the notch depth or notch angle. The findings of this study are beneficial for the size effect modeling and later fatigue strength evaluating of TC4 notched components.  相似文献   

6.
Fatigue analysis-based numerical design of stamping tools made of cast iron     
K. Ben Slima  L. Penazzi  C. Mabru  F. Ronde-Oustau 《The International Journal of Advanced Manufacturing Technology》2013,67(5-8):1643-1650
This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the SN curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (SN) curves for this material is determined at room temperature under push pull loading with different load ratios R?=?σ min/σ max?=??2, R?=??1 and R?=?0.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important.  相似文献   

7.
An Investigation into the Effect of Normal Load Frequency on Fretting Fatigue Behavior of Al7075-T6     
G. H. Majzoobi  F. Abbasi 《摩擦学汇刊》2018,61(3):547-559
Most previous studies on fretting fatigue have been accomplished under constant normal loading and less attention has been paid to cyclic normal loading. An innovative test apparatus was specially designed and manufactured for fretting fatigue tests under cyclic loading in this work and the fretting fatigue behavior of Al7075-T6 was investigated at different normal load frequencies. A finite element model was developed to study the effect of normal load frequency on the contact stress distribution. It was found that the cyclic normal load has a more damaging effect on fretting fatigue life compared to constant normal load, particularly at lower frequencies. The results showed that at the normal load frequency of f = 1 Hz, fatigue life decreased by 52% in the high cycle fatigue regime and 28% in the low cycle fatigue regime. The experimental results also indicated that at the normal load frequency of 80 Hz, the fretting fatigue life converged to its corresponding life under constant normal load condition. The fracture surface and the fretting area of the specimens were examined using both optical and scanning electron microscopy (SEM). The experimental observations showed that the dominant partial slip condition with a wider slip region compared to constant normal loading, severe delamination, and higher oxidation rate due to the normal load release at each cycle, are the most important reasons for significant reductions in fretting fatigue life, under cyclic normal loading, especially for low normal load frequencies.  相似文献   

8.
The effect of rubber contact on the fretting fatigue strength of railway wheel tire   总被引:1,自引:0,他引:1  
Masanobu Kubota  Kenji Hirakawa 《Tribology International》2009,42(9):1389-1398
The cause of the ICE train derailment, which occurred in 1998 at Eschede, was fatigue failure originating on the inside of the wheel tire. Rubber-sprung resilient wheels were used for the trailer cars. The wheel tire is mounted on the wheel disc. Thirty-four rubber pads were arranged between the wheel disc and the wheel tire. It was postulated that fretting fatigue between the rubber block and the inner side of the tire might have an influence on the initiation of the incipient crack. In order to clarify the influence of the rubber contact on the fatigue strength of the tire, fretting fatigue experiments under rubber contact conditions were performed. During the fundamental fretting fatigue test using bridge pads and small size carbon steel specimens, no typical fretting damage such as fretting wear and minute cracks were observed due to contact of the rubber. Stress conditions of the rubber-sprung wheel under vertical and lateral wheel loads were evaluated by a three-dimensional elastic stress analysis. Since the rubber is a super-elastic material, the Mooney-Rivlin model was used in the FEM calculation. It was found that the wheel tire is subjected to a cyclic stress during one revolution of the wheel and the maximum stress occurred at the center of the inner surface of the tire where the fatigue crack initiated. Fatigue strength of the wheel tire was determined by the rotating bending fatigue testing of specimens taken from the tire. It was found that the tire with an 862 mm diameter at a wheel load of 80 kN had a safety factor more than 3.5 from a fatigue limit diagram with a failure probability of 0.01. To confirm the fretting damage under the rubber contact and the result of the fatigue strength evaluation, fatigue tests of a full size wheel were made. After 20 million cycles at the wheel load of 280 kN, which was just below the endurance limit estimated by the endurance limit diagram, no fretting damage and no fatigue cracks were observed. The wheel was, however, fractured at 1.56 million cycles under the maximum load of 308 kN, which was just above the endurance limit. The estimation of the safety factor of 3.5 estimated from the endurance diagram was confirmed by the full size fatigue testing. It was concluded that there was no effect of fretting due to the rubber contact on the fatigue strength of the rubber-sprung single-ring railway wheel.  相似文献   

9.
Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub     
Teuvo Juuma   《Tribology International》2000,33(8)
Fretting causes considerable reduction in the fatigue strength of a shrink-fit assembly and failures through fretting are as numerous as failures from normal fatigue. The purpose of this investigation was to determine the effect of contact pressure and slip amplitude on the fatigue limit, and a favourable value for overhang of hub and fillet radius with constant diameter ratio, at which fretting failure can be avoided and the maximum normal fatigue strength will be obtained. The torsional fatigue strength of shrink-fitted shaft couplings was estimated by tests performed by varying the overhang of the hub, the fillet radius of the shaft and the contact pressure of the shrink-fitted assembly. Press-fitting of the hub overhanging the shoulder was used to increase the contact pressure. The tests were performed using a grooved hub. These experiments showed that fretting was reduced with an increase in contact pressure, because the slip amplitude decreased. The shaft was fractured just inside the end of the fit by fretting fatigue with low contact pressure, but if the contact pressure was very high, the shaft fractured at the fillet by normal fatigue. The fretting fatigue limit at a constant diameter ratio increases with an increase in the fillet radius, and reaches its maximum value at a certain radius using the grooved hub.  相似文献   

10.
疲劳寿命估算中的模糊性研究   总被引:3,自引:0,他引:3  
王旭亮  聂宏 《机械科学与技术》2008,27(9)
针对工程中构件疲劳寿命估算存在的模糊现象,引入模糊理论中的隶属函数来描述疲劳极限附近的应力对构件造成损伤的模糊性,提出了应力模糊带的概念。并根据疲劳极限与应力模糊带边界的位置关系,将模糊带类型分为安全型、经济型和兼顾型。算例证明:将模糊理论应用于疲劳寿命分析中可以大大提高疲劳寿命预测的精度;选用安全型模糊带和升半正态分布隶属函数,且a=0.6σr,k=0.5时,与忽略模糊性的传统疲劳寿命预测方法相比误差可以减小38.7%。  相似文献   

11.
钛合金高周疲劳特性的影响因素分析     
周为富  赵振华  陈伟 《现代机械》2009,(3):90-93
高周疲劳(HCF)亦称高循环疲劳,它是航空燃气涡轮发动机的主要失效方式之一。高周疲劳失效几乎涉及航空发动机每一个钛合金零件,如压气机叶片、压气机内环和机匣等,会导致发动机重要部件的过早失效,甚至整个发动机和飞机的损失。但仅研究高周疲劳并不能解决实质问题,必须研究各种损伤对钛合金材料高周疲劳特性的影响。损伤通常包含低周疲劳、外物损伤、在缺口或应力集中处形成裂纹和接触疲劳等,这些损伤都可能降低高周疲劳性能。本文主要介绍和总结了国内外有关低周疲劳和外物损伤对钛合金高周疲劳特性影响的研究现状。  相似文献   

12.
微动疲劳寿命预测方法的探讨   总被引:2,自引:0,他引:2  
乐晓斌  何明鉴 《机械强度》1996,18(3):53-55
进行激动疲劳和普通疲劳的对比分析,找出它们的差异和共性。根据已有的研究成果,本文提出根据微动作用确定疲劳裂纹萌生和扩展点的位置,在该位置用普通的疲劳理论和计算方法计算微动疲劳寿命的方法。该方法具有一定的准确性,可用来进行微动疲劳寿命的初步估算。  相似文献   

13.
Al-Li 8090 和 Ti-6Al-4V 的 20 kHz 微动疲劳研究     
陶华 《机械科学与技术》1998,(1)
用超声疲劳试验技术研究了Al-Li8090铝锂合金和Ti-6Al-4V钛合金在20kHz时的微动损伤现象。试验结果表明,在极高频率下,也有微动损伤发生,并可引发疲劳裂纹的萌生和扩展,导致微动疲劳破坏。  相似文献   

14.
核电汽轮机转子在低周疲劳与高周疲劳交互作用下裂纹扩展寿命的研究     
史进渊 《机械工程学报》2015,51(22):152-158
提出核电汽轮机转子在低周疲劳与高周疲劳交互作用下裂纹扩展寿命的计算与评定方法。介绍核电汽轮机转子的低周疲劳与高周疲劳的应力幅与应力范围、低周疲劳裂纹扩展寿命与高周疲劳扩展寿命的计算方法。给出了核电汽轮机转子在低周疲劳与高周疲劳交互作用下裂纹扩展日历寿命的计算与评定方法,以及1 000 MW级核电汽轮机焊接低压转子疲劳裂纹扩展日历寿命的计算与改进的应用实例。结果表明,高周疲劳对汽轮机转子疲劳裂纹扩展日历寿命有比较大的影响,新研制核电汽轮机的转子结构设计和在役核电汽轮机的转子安全性评定,需要评估转子在低周疲劳与高周疲劳交互作用下裂纹扩展 寿命。  相似文献   

15.
Fracture mechanics approach to fretting fatigue and problems to be solved     
Yoshiharu Mutoh  Jin-Quan Xu 《Tribology International》2003,36(2):3911
A large number of research works have been devoted to fretting fatigue from both mechanical and metallurgical viewpoints. In the present paper, fracture mechanical approaches for evaluating fretting fatigue life and strength have been briefly reviewed. Furthermore, a new approach based on a singular stress field near the contact edge and on fracture mechanics has been proposed. The directions of crack initiation and propagation as well as fretting fatigue life, which have coincided with the experimental results, could be estimated according to the new approach, in which singular stress near the contact edge and mixed mode crack growth have been taken into consideration. In the application of the new method to predict the fretting fatigue behavior, there are still several problems to be clarified, which have also been discussed in detail.  相似文献   

16.
某型航空发动机涡轮盘低循环疲劳寿命分析   总被引:5,自引:0,他引:5  
杨兴宇  阎晓军  赵福星  董立伟 《机械强度》2004,26(Z1):229-233
确定发动机零部件的最大应力应变循环是进行零部件寿命研究的重要内容之一.弹塑性有限元分析常用于计算最大应力应变循环,但是由于各种载荷、约束等条件考虑不全面,得到的应力应变循环往往偏大.同时,某些零部件的瞬态温度场是决定其疲劳强度和使用寿命的重要因素,而获得准确的瞬态温度场是非常困难的.文中对某型发动机的高压涡轮盘进行疲劳试验条件下弹塑性有限元分析,对一台涡轮盘的残余应力进行测试,利用稳态温度场计算涡轮盘危险点最大应力应变循环,并根据弹塑性有限元分析和通过残余应力测试得到的最大应力应变循环进行低循环疲劳寿命预测.研究结果表明,弹塑性有限元分析法预测的寿命偏低,由残余应力可以较准确地确定最大应力应变循环.  相似文献   

17.
An experimental study on bending fretting fatigue characteristics of 316L austenitic stainless steel     
J.F. PengC. Song  M.X. ShenJ.F. Zheng  Z.R. ZhouM.H. Zhu 《Tribology International》2011,44(11):1417-1426
Bending fretting fatigue tests of 316L austenitic stainless steel plates against 52100 steel cylinders have been carried out under same normal load and varied bending loads. Tests of plain bending fatigue were carried out as a control group. The S-N curves of the bending fatigue were made. The results indicated that there was an obvious drop of life under the condition of bending fretting fatigue due to higher local contact stress. A dislocation model of micro-crack nucleation mechanism, as a manner of zig-zag mode, was created to explain the nucleation of fretting fatigue cracks.  相似文献   

18.
Characterization of fretting fatigue crack initiation processes in CR Ti–6Al–4V     
A. L. Hutson  C. Neslen  T. Nicholas 《Tribology International》2003,36(2):133-143
A study was conducted to quantify fretting fatigue damage and to evaluate the residual fatigue strength of specimens subjected to a range of fretting fatigue test conditions. Flat Ti–6Al–4V specimens were tested against flat Ti–6Al–4V fretting pads with blending radii at the edges of contact. Fretting fatigue damage for two combinations of static average clamping stress and applied axial stress was investigated for two percentages of total life. Accumulated damage was characterized using full field surface roughness evaluation and scanning electron microscopy (SEM). The effect of fretting fatigue on uniaxial fatigue strength was quantified by interrupting fretting fatigue tests, and conducting uniaxial residual fatigue strength tests at R=0.5 at 300 Hz. Results from the residual fatigue strength tests were correlated with characterization results.While surface roughness measurements, evaluated in terms of asperity height and asperity spacing, reflected changes in the specimen surfaces as a result of fretting fatigue cycling, those changes did not correspond to decreases in residual fatigue strength. Neither means of evaluating surface roughness was able to identify cracks observed during SEM characterization. Residual fatigue strength decreased only in the presence of fretting fatigue cracks with surface lengths of 150 μm or greater, regardless of contact condition or number of applied fretting fatigue cycles. No cracks were observed on specimens tested at the lower stress condition. Threshold stress intensity factors were calculated for cracks identified during SEM characterization. The resulting values were consistent with the threshold identified for naturally initiated cracks that were stress relieved to remove load history effects.  相似文献   

19.
Mean stress effects in fretting fatigue life estimation method using fatigue damage gradient correction factor     
Dong Hyeon Hwang  Sung-San Cho 《Journal of Mechanical Science and Technology》2017,31(9):4195-4202
In our previous study, we developed a fretting fatigue life estimation method that considers stress gradient effect [Journal of Mechanical Science and Technology 28 (2014) 2153–2159]. In this method, fatigue damage value at the cracking location is corrected with the factor that is a function of fatigue damage gradient, and the corrected value is treated as the fatigue damage value in plain fatigue for life estimation. In the present study, we examined the effect of mean stress on fatigue damage gradient correction function, because the reliability of the developed method was only verified at a stress ratio (R) of ?1 in previous studies. Fretting fatigue experiments were conducted to obtain the fatigue life data of three different fretting pad shapes with R values ranging from ?1.0 to 0.3. Finite element analyses were then conducted to evaluate the fatigue damage parameter in the cracking region. The results revealed that fretting fatigue life decreases at increased stress ratio. Furthermore, the fatigue damage gradient correction function was unaffected by the stress ratio, although it is affected by plastic deformation at the cracking location. Thus, a correction function for the occurrence of plastic deformation and another for the absence of plastic deformation are necessary. The developed method was demonstrated to predict the fretting fatigue life at various levels of stress ratio with the use of plain fatigue data.  相似文献   

20.
Effects of humidity and contact material on fretting fatigue behavior of an extruded AZ61 magnesium alloy     
Anchalee Saengsai 《Tribology International》2009,42(9):1346-1351
Fretting fatigue tests of the extruded AZ61 magnesium alloy with the same contact material under low and high humidity were carried out to investigate basic fretting fatigue characteristics and effect of humidity on fretting fatigue behavior. Influence of contact material was also studied by using JIS S45C carbon steel contact material. Degradation of fatigue strength due to fretting was much more significant than that due to corrosion under high humidity condition. Therefore, no effect of humidity on fretting fatigue strength was found. Reduction rate of fatigue strength due to fretting for the magnesium alloy was between those of aluminum alloys and titanium alloys. Tangential force coefficient of the magnesium alloy was rather low compared to other materials such as steels, aluminum alloys and titanium alloys. Fretting fatigue strength with the S45C contact material was inferior compared to that with the same contact material. This is mainly due to higher tangential force in AZ61/S45C contact. Fretting fatigue cracks at the edge of fretting contact region were observed to nucleate in the very early stage of fatigue life, similar to other structural materials.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
Fretting fatigue occurs in many engineering applications. Fretting fatigue life is estimated by experiment, which is tedious and requires special equipment and instrumentation. In this study, we attempt to introduce a method for estimation of fretting fatigue life from plain fatigue (normal fatigue without fretting) experiments. The method employs the critical distance theory for estimation of fretting fatigue life of Al7075-T6 under rotary bending loading. The approach uses the Fatemi-Socie parameter (FSP) as a multiaxial criterion to account for the stress multiaxiality on focus path. A comparison between the predictions of the new approach with the experimental results shows that the approach is quite accurate for low stress or high cycle fatigue regimes but for high stresses it is slightly conservative. This method considers only elastic behavior for materials and two characteristic diagrams that are obtained simply by testing two simple notched specimens under plain fatigue conditions. The method is therefore an applicable approach that can be used in the context of finite fretting fatigue life estimation with no need for fretting fatigue tests.  相似文献   

2.
Fretting fatigue strength estimation considering the fretting wear process   总被引:1,自引:0,他引:1  
In fretting fatigue process the wear of contact surfaces near contact edges occur in accordance with the reciprocal micro-slippages on these contact surfaces. These fretting wear change the contact pressure near the contact edges. To estimate the fretting fatigue strength and life it is indispensable to analyze the accurate contact pressure distributions near the contact edges in each fretting fatigue process.So, in this paper we present the estimation methods of fretting wear process and fretting fatigue life using this wear process. Firstly the fretting-wear process was estimated using contact pressure and relative slippage as follows:
W=K×P×S,
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号