首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
以气化稻壳炭(GRHC)为原料,KOH为活化剂制备活性炭,研究了不同活化温度和碱炭比对活性炭得率、比表面积、孔径分布以及碘值的影响。利用全自动气体吸附分析仪、X射线衍射仪、傅里叶变换红外光谱仪、扫描电镜等仪器对活性炭的理化性质进行表征,并通过吸附等温线、吸附动力学探讨其对甲基橙的吸附机制。结果表明:活化时间为1 h时,随着活化温度和碱炭比的增加,活性炭得率逐渐下降,比表面积和碘吸附值呈先增加后减少的趋势;气化稻壳炭制备活性炭的最佳工艺为碱炭比2:1、活化温度800℃、活化时间1 h,此条件下制备的活性炭得率41.73%、比表面积1 829.09 m2/g,总孔容1.007 cm3/g、碘吸附值1 984.85 mg/g、甲基橙饱和吸附量为217.87 mg/g。气化稻壳活性炭对甲基橙的吸附过程与Langmuir和Freundlich模型相关性都良好(R2>0.99),吸附动力学更加符合准二级动力学模型。  相似文献   

2.
《应用化工》2022,(5):961-965
采用KOH活化改性制备焦粉吸附材料MCP,研究MCP对水中Cd(2+)的吸附效果。结果表明,在KOH溶液浓度14 mol/L(焦粉质量∶KOH溶液体积=1∶4),活化温度850℃,活化时间120 min工艺条件下制得的MCP,亚甲基蓝吸附值达到132.5 mg/g。在30℃、pH值8.0的25 m L含Cd(2+)的吸附效果。结果表明,在KOH溶液浓度14 mol/L(焦粉质量∶KOH溶液体积=1∶4),活化温度850℃,活化时间120 min工艺条件下制得的MCP,亚甲基蓝吸附值达到132.5 mg/g。在30℃、pH值8.0的25 m L含Cd(2+)(浓度为100 mg/L)废水中,投加0.2 g的MCP,处理120 min,Cd(2+)(浓度为100 mg/L)废水中,投加0.2 g的MCP,处理120 min,Cd(2+)去除率达96.91%,吸附量为12.12 mg/g。实验条件下,MCP对Cd(2+)去除率达96.91%,吸附量为12.12 mg/g。实验条件下,MCP对Cd(2+)吸附过程与准一级动力学及准二级动力学模型均有较好吻合,后者拟合度更高;用Langmuir和Freundlich模型处理等温吸附线,前者与实际过程更为接近。  相似文献   

3.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

4.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

5.
以新疆棉花秸秆为原料,Zncl2/Alcl3为活化剂制备棉秆活性炭,探讨了Zncl2/Alcl3与棉秆比例、Zncl2与Alcl3比例、浸渍时间、活化温度及活化时间对棉秆活性炭收率和碘吸附值的影响,并采用SEM对制备的棉秆活性炭进行了表征。结果表明,Zncl2/Alcl3活化制备棉秆活性炭表面有较清晰的孔道结构,分布有形状、大小不一的发达的孔洞;在试验范围内得到Zncl2/Alcl3活化制备棉秆活性炭的较优工艺条件为:Zncl2/Alcl3与棉秆比例1:1、Zncl2与Alcl3比例9:1、浸渍时间16h、活化温度600℃、活化时间90min,在此条件下制备的棉秆活性炭的收率为24.18%,碘吸附值为693.71mg/g,BET比表面积410m2/g,平均孔径3.19nm,孔容0.327cm3/g。  相似文献   

6.
《应用化工》2022,(12):2947-2950
以牡丹花茶饮料生产末端茶渣(以下简称"茶渣")作为活性炭制备原料,考察磷酸与茶渣的浸渍比、活化温度、活化时间对活性炭得率、碘吸附值的影响。结果表明,磷酸法制备茶渣活性炭的最佳工艺参数为:浸渍比(磷酸/原料)为1∶2.5,活化温度550℃,活化时间0.5 h。活性炭得率为29.91%,碘吸附值为968.75 mg/g。含水率为4.80%,灰分含量为17.25%。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。100 mL浓度为10 mg/L的苯酚废水,加入0.1 g活性炭,25℃振荡1 h,pH=5时,茶渣活性炭对于苯酚吸附量达到8.67 mg/g,吸附率约为87%。  相似文献   

7.
《应用化工》2019,(12):2947-2950
以牡丹花茶饮料生产末端茶渣(以下简称"茶渣")作为活性炭制备原料,考察磷酸与茶渣的浸渍比、活化温度、活化时间对活性炭得率、碘吸附值的影响。结果表明,磷酸法制备茶渣活性炭的最佳工艺参数为:浸渍比(磷酸/原料)为1∶2.5,活化温度550℃,活化时间0.5 h。活性炭得率为29.91%,碘吸附值为968.75 mg/g。含水率为4.80%,灰分含量为17.25%。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。100 mL浓度为10 mg/L的苯酚废水,加入0.1 g活性炭,25℃振荡1 h,pH=5时,茶渣活性炭对于苯酚吸附量达到8.67 mg/g,吸附率约为87%。  相似文献   

8.
利用稻草制浆黑液中提取的木质素/二氧化硅复合材料为前驱体制备了活性炭.研究了活化剂KOH用量、活化反应的温度和活化反应的时间对活性炭吸附性能的影响.最佳的反应条件为:浸渍比(KOH于复合材料的质量比)为3:1,活化反应的温度为750℃,活化反应的时间为1h,此时制备的活性炭碘吸附值最大.制备的活性炭碘吸附值达到816.26 mg/g,BET比表面积为532.6 m2/g.活性炭大部分为介孔结构,含有少量微孔结构,平均孔径在6 nm.  相似文献   

9.
以碘吸附值为评价指标,活化时间、活化温度和浸渍比为影响因素,采用响应面法试验设计对磷酸活化法制备咖啡渣活性炭的工艺条件进行优化,并通过静态吸附试验研究了不同吸附时间、溶液pH值和吸附温度条件下,活性炭对水溶液中Cr(Ⅵ)吸附性能的影响,最后利用Langmuir、Freundlich吸附等温方程、准一级动力学方程、准二级动力学方程和颗粒内部扩散方程进行拟合。试验结果表明,制备咖啡渣活性炭的最佳工艺条件为活化时间1 h、活化温度498℃、浸渍比1.72;在此条件下活性炭得率为30.4%,碘吸附值为(799±16)mg/g,比表面积为1 006 m2/g,孔容为0.779 cm3/g、微孔孔容为0.051 cm3/g、平均孔径为3.088 nm。较低pH值和较高温度能够促进活性炭对Cr(Ⅵ)的吸附;Langmuir等温方程能够更好地描述活性炭对Cr(Ⅵ)的吸附效果;活性炭对Cr(Ⅵ)的吸附分3个阶段:快速吸附阶段、慢速吸附阶段和吸附平衡阶段,10 min内可完成吸附总量的79%,360 min内达到吸附平衡,该吸附过程符合准二级吸附动力学方程。分析表明咖啡渣活性炭对Cr(Ⅵ)的吸附主要为单分子层的化学吸附。  相似文献   

10.
以茶渣作为原料,采用氢氧化钾活化法制备茶渣活性炭,探究了活性炭在不同条件下对亚甲基蓝的吸附性能。结果表明,茶渣活性炭具有多孔结构,表面含有含氧官能团,其比表面积为2 414 m2/g。将此活性炭应用于吸附亚甲基蓝,在40 mL浓度为200 mg/L的亚甲基蓝溶液中,活性炭添加量为4 mg,活性炭对亚甲基蓝的吸附量为1 488 mg/g。活性炭吸附亚甲基蓝的吸附模型符合Langmuir模型,动力学符合准二级动力学模型。茶渣活性炭对染料污染物有优异的吸附效果,在染料废水治理中有很大的应用前景。  相似文献   

11.
Carbonaceous adsorbents with controllable pore sizes derived from carbonized pistachio shells (i.e., char) were prepared by the KOH activation and steam activation methods in this work. The pore properties including the BET surface area, pore volume, pore size distribution, and pore diameter of these activated carbons were characterized by the t-plot method based on N2 adsorption isotherms. Through varying the KOH/char ratios from 0.5 to 3, the KOH-activated carbons exhibited BET surface areas ranging from 731 to 1687 m2/g with a similar micropore content (80–92%). The carbons activated by steam at 830 °C for 2 h had a BET surface area of 821 m2/g with the micropore content of 42%. The micropore/total pore volume ratio (Vmicro/Vpore) and average pore size (Dpore) were independent of the KOH/char ratio, revealing that KOH activation is a powerful method in developing and controlling the number of micropores with a very similar pore size distribution. The adsorption equilibria and kinetics of methylene blue, basic brown 1, acid blue 74, 2,4-dichlorophenol, 4-chlorophenol, and phenol from water on all activated carbons at 30 °C were investigated to demonstrate the fact that adsorption of organics is not only dependent upon the BET surface area but is also determined by the relative size between pores and molecules. The adsorption isotherms were subjected to the model fitting according to Langmuir and Freudlich equations. By comparing the projected area of adsorbates, the surface coverage of phenols is about 3.6 times of that of dyes (based on unit gram of activated carbon). The Elovich equation was found to suitably describe the adsorption process of all KOH-activated carbons while the adsorption behavior on the steam-activated carbon was reasonably fitted with the intraparticle diffusion model.  相似文献   

12.
以南疆地区盛产的巴旦杏核壳、核桃壳和白杏核壳为原料,采用微波辐照磷酸法分别制备了巴旦杏核壳活性炭(BAC)、核桃壳活性炭(HAC)和白杏核壳活性炭(XAC),干果核壳基质活性炭的制备工艺:10 g干果核壳以固液比1:3(g:mL)浸渍40%磷酸24 h,微波功率640 W,活化时间16 min。采用物理吸附仪、扫描电镜(SEM)、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)等表征方法比较研究了不同种类干果核壳活性炭性能差异。结果表明:巴旦杏核壳、核桃壳和白杏核壳活性炭的热分解过程、残留基团基本一致,活性炭晶型均以非晶态为主。3类干果核壳活性炭表面分布着大量孔洞,且孔洞主要为0.4~1.2 nm的微孔和3~6 nm的中孔。其中,白杏核壳活性炭的性能最优,BET比表面积达981.5 m2/g,总孔容达0.570 cm3/g,亚甲基蓝吸附值达269.6 mg/g,碘吸附值达1 162.8 mg/g。  相似文献   

13.
以氯化锌浸渍的木屑为原料,黏土为粘结剂,制备炭陶复合吸附材料。讨论了炭化温度和保温时间对其吸附性能的影响,并对其孔隙结构进行了表征。结果表明,随温度和保温时间的增加,炭陶复合吸附材料的碘吸附值和亚甲基蓝吸附值呈先上升后下降的趋势;木屑受到活化作用形成活性炭而发生收缩,在活性炭和陶土之间形成空隙,有利于形成孔隙结构发达的炭陶复合吸附材料。在温度500℃、保温时间1 h的较佳工艺条件下,制得炭陶复合吸附材料的比表面积为809.5 m2/g,总孔容积为0.298 cm3/g,中孔容积为0.185 cm3/g,微孔容积为0.113 cm3/g,炭陶的含炭量为60.7%,碘吸附值为680.5 mg/g,亚甲基蓝吸附值为165.0 mg/g。  相似文献   

14.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400 ℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

15.
以咖啡壳为原料、KOH为化学活化剂制备高性能活性炭,在单因素试验探索活化时间、活化温度和碱炭比对活性炭碘吸附值影响的基础上,运用响应面法进行活化工艺参数优化。通过对模型优化确定最佳工艺参数为活化时间5 min、活化温度950℃和碱炭比(KOH和咖啡壳炭化料质量比,下同)4∶1;该条件下制备的活性炭的碘吸附值为2 214 mg/g(实验值),和预测值(2 209.5 mg/g)基本相符,验证了模型的有效性。  相似文献   

16.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

17.
以椰壳炭化料为原料,KOH为活化剂,在不同工艺条件下制备了超级电容器用活性炭电极材料。考察了碱炭比、活化温度和活化时间对活性炭孔隙结构及其用作电极材料的比电容的影响。结果表明,在KOH与椰壳炭化料质量比为4:1,活化温度800℃,活化时间60 min的条件下,可制得比表面积2891 m2/g,总孔容积1.488 cm3/g,中孔率73.6%,比电容达235 F/g的优质活性炭电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号