首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
MnO2是一种极具潜力的超级电容器用电极材料,但因其结构形貌复杂多变、电导率较差,限制了其电化学性能的发挥。石墨烯虽然具有高电导率和大的比表面积等优良特性,但是石墨烯的堆叠聚集降低了其有效比表面积和电导率,导致其实际比电容远远低于理论值。针对这一问题,将MnO2和石墨烯相结合可以提高石墨烯的有效比表面积和比容量,充分利用各自的性能相互补偿,以提高复合电极的电化学性能。综述了MnO2/石墨烯复合电极的制备方法和研究现状,同时提出了MnO2/石墨烯复合电极的发展建议。  相似文献   

2.
作为一种高性能新型储能器件,超级电容器具有功率密度高、充电时间短、绿色环保等诸多优点,决定超级电容器性能的关键因素是电极材料的性能。以煤为原料,通过高温热处理、化学氧化及等离子体还原技术制备得到煤基石墨烯;进一步将煤基石墨烯与聚丙烯腈(PAN)通过静电纺丝技术复合制备得到煤基石墨烯/炭纳米纤维(PM-CG)复合材料,以期借助于石墨烯所具备的高导电性、电子迁移率等性能获得具有优良电化学性能的电极材料。采用物理吸附仪、扫描电镜以及透射电镜等仪器对所制备的炭纳米纤维进行了表征,并通过电化学工作站研究了其作为超级电容器电极材料的电化学性能。结果表明,煤基石墨烯成功掺杂到炭纳米纤维中,所制备的PM-CG复合材料在6 mol/L KOH电解液中的比电容值可达225.1 F·g~(-1),是同样条件下纯PAN炭纳米纤维比电容值的2.57倍。  相似文献   

3.
张燕  王淼  赵佳辉  冯宇  米杰 《化工进展》2022,41(10):5501-5509
碳基复合材料被认为是超级电容器广泛应用最有前景的电极材料之一。本文使用氧化石墨烯(GO)、硝酸钴[Co(NO3)2]、三聚氰胺为原料,利用钴对高温下热解碳源的催化作用,制备得到了氮掺杂石墨烯/碳纳米管/无定形炭(NC)复合材料,并测试了其电化学性能。探究了金属和三聚氰胺添加量对碳基复合材料结构和性能的影响,研究发现,在添加量分别为0.02mmol和0.3g时,制得的样品具有大比表面积(380.5m2/g)和高掺氮质量分数(6.29%),并在三电极系统中体现出优异的电化学性能,电流密度为0.5A/g时样品的比电容为137.1F/g,5A/g时比电容为113.5F/g,保持率为88.5%,具有优异的倍率性能,在循环5000圈后样品的容量保持率为104%,具有良好的循环稳定性,这归因于三维结构可以加快充放电过程中的离子转移和氮掺杂可提高材料润湿性和贡献部分赝电容,为超级电容器电极材料的制备提供了理论借鉴。  相似文献   

4.
将具有法拉第赝电容但导电性较差的材料与具有良好导电性的石墨烯结合是提高超级电容器电极材料电容性能的合理策略。以水热法制备的Ni(OH)_2/石墨烯复合材料与生长有Co(OH)_2的泡沫镍制得修饰电极。用循环伏安法(CV)、恒电流充放电(CP)和电化学阻抗(EIS)测试了其在6 mol/L KOH溶液中的电容行为。实验表明,片状六边形Ni(OH)_2插入薄膜状石墨烯片层间,Ni(OH)_2/石墨烯/Co(OH)_2电极材料有良好的电容性能,在电流密度为1 A/g时比电容量达到了294 F/g,能量密度为36.75 Wh/kg。充放电循环1 000圈后比电容值仍是初始电容的92.7%。  相似文献   

5.
石墨烯由于其独特的二维结构和优异的物理性质,如高电导率、高比表面积等,是目前最具潜力的超级电容器的电极材料之一。本文综述了石墨烯作为超级电容器电极材料的研究进展,包括石墨烯的改性与结构设计、石墨烯与赝电容电极材料复合(如金属氧化物和导电聚合物)、石墨烯与其他炭材料复合等。并对石墨烯应用到超级电容器电极材料中存在的问题展开了讨论。  相似文献   

6.
以生物质废弃物柚子皮、爆米花、夏威夷果壳为碳源,采用生物质高温碳化技术,在氮气保护下高温碳化处理得到PP、POP、MS三种本质生物质碳材料,利用XRD、SEM、BET等手段对其进行表征,并利用三电极超级电容器体系,在不同的水系电解液中测试超级电容器的电化学性能。当电解液为6 mol/L KOH溶液,电流密度为0.5 A/g时,MS的比电容为58.25 F/g,表现了良好的超级电容器性能。  相似文献   

7.
为提高煤炭利用率,以煤系腐植酸为前驱体,KOH为活化剂,在较低碱炭比(≤1)和活化温度(700℃)条件下制备双电层电容器用炭电极材料。利用低温N_2吸附对所制炭材料进行孔结构表征,采用恒流充放电、循环伏安和漏电流测试等手段评价其在3 mol/L KOH中的电化学性能。结果表明,所制炭材料呈现典型的层次阶梯孔径分布,孔径主要分布在0. 5~5. 0 nm,包括0. 5~1. 8 nm微孔和3. 5~4. 6 nm中孔;氧元素含量均超过20%。随着碱炭比升高,相应炭材料含氧量、比表面积、总孔容和微孔孔容逐渐升高,最高分别为26. 67%、878 m~2/g、0. 66 cm~3/g和0. 407 cm~3/g;中孔率先升高后降低,最高为62. 1%。微孔主要是腐植酸在活化过程中挥发分析出和部分含氧官能团热解形成的,高的中孔率主要由于钾的扩孔作用。4种层次孔炭电极材料在3 mol/L KOH电解液中具有良好的充放电可逆性和典型的双电层电容特性,其质量比电容、比电容保持率最高分别达256 F/g、84%,漏电流≤0. 015 m A。各炭材料具有合理的孔径分布,同时含有丰富的含氧官能团,有利于缩短电解质离子在电极材料内部的扩散路径,提高电极材料与电解液的润湿性,降低扩散阻力,是一种理想的双电层电容器用炭电极材料。  相似文献   

8.
以河北无烟煤为原料,KOH为活化剂,采用化学活化法制备具有高比表面积的煤基电容炭,考察煤基电容炭的比表面积对无机/有机体系下双电层电容器电化学性能的影响。结果表明:随着碱煤比的增加,所制电容炭的比表面积、总孔容和中孔率增加。当碱煤比达到3.5时,所制电容炭的比表面积、总孔容和中孔率分别为3 389 m2/g、2.041 cm3/g、49.9%。可以看出,对于无机/有机体系,在相同的比表面积变化规律下,电容器电化学性能的变化规律略有不同。当碱煤比小于2时,所制电容炭的比表面积小于2 400 m2/g,此时对于无机/有机体系,电容器的比电容变化规律相同,比电容都随比表面积的增大增幅明显。当碱煤比大于2时,所制电容炭的比表面积大于2 400 m2/g,此时随着比表面积的继续增大,对无机体系,电极材料的比电容几乎维持不变,比电容最高可达331 F/g;对有机体系,电极材料的比电容增幅减缓,比电容最高可达192 F/g。当碱煤比为2时,电容炭的比表面积为2 382 m2/g,此时无论对于无机体系还是有机体系,电容器在保持相对较高比电容的同时具有相对较高的电容保持率。由此可知,一定程度上,提高电极材料的比表面积有利于提升超级电容器的电化学性能。制备具有适宜比表面积的电容炭,在得到较高电容性能电容器的同时更能有效控制成本。同时,以煤为原料制备电容炭,可提升煤的附加值,具有很好的市场前景。  相似文献   

9.
以玉米芯为原料,经Zn Cl_2一步活化法制备超级电容器用电容炭电极材料。采用低温N_2吸附、扫描电镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)及X射线光电子能谱(XPS)等手段系统表征电容炭的微观结构及表面性质,并利用恒流充放电、循环伏安和漏电流等测试手段研究其在无机电解液体系(KOH)中的电化学性能。研究表明:在Zn Cl_2/玉米芯浸渍比为2:1、700℃的条件下活化1h可制备出比表面积为1340m~2/g、总孔容为1.135cm~3/g、中孔率高达97.7%的玉米芯电容炭。将其用作电极材料表现出良好的电化学特性,在50m A/g的电流密度下质量比电容为159F/g,2500m A/g电流密度下比电容仍可达137F/g,1000次循环后比电容保持率为92.5%,漏电流仅为1.9μA。结果表明:玉米芯电容炭具有良好的倍率特性和循环性能,是一种理想的电化学电容器用电极材料。  相似文献   

10.
高比表面活活性炭电级的电化学性能研究   总被引:2,自引:0,他引:2  
选用比表面积为2590m^2/g的石油焦基活性炭作为双电层电容器的炭电极材料,用直流恒流循环实验考察双电层电容器在不同允放电条件下的电化学性能。实验发现,活性炭电极具有良好的循环充放电性能,充放电效率高达97%,远高于普通电池。不同充放电电流有不同的充放电容量,恒流1mA充放电容量大于2mA和5mA时的充放电容量。活性炭的比电容为60F/g,且电化学性能稳定,有良好的应用前景。  相似文献   

11.
超级电容器具有广泛的应用领域,但由于传统活性炭在能量密度和导电性方面不能充分满足社会对超级电容器的需求,严重限制了其在大型储能装置中的应用。因此,研发具有更高储能性能的材料具有重要意义。本文以资源丰富的太西无烟煤为前驱体,采用预炭化-KOH活化联合工艺制备新型煤基微晶炭,并将其用作超级电容器电极材料。利用X射线衍射(XRD)、低温N_2吸附等手段表征煤基微晶炭的微晶结构及孔结构参数,并利用恒流充放电,循环伏安,交流阻抗等探究对应电极材料的电化学性能。结果表明,煤基微晶炭含有大量较为完整的类石墨微晶结构,且随着碱炭比用量的增加,类石墨微晶结构被逐步破坏,其层间距d_(002)由0.391 5 nm逐渐增至0.405 9 nm。在碱炭比4∶1、活化温度800℃、活化时间为2 h的条件下,可制备出比表面积为928 m~2/g、总孔容为0.527cm~3/g、中孔率为26.46%的微晶炭。将该煤基微晶炭用作电极材料在以1 mol/L(C_2H_5)_4NBF_4/PC为电解液的超级电容器中,表现出优异的电化学性能:50 m A/g的电流密度下比电容为94.8 F/g,能量密度可达40.3 Wh/kg,在500 m A/g电流密度下1 000次循环后比电容保持率为87.3%,具有良好的循环稳定性,并且在阻抗曲线中体现出更小的离子扩散阻力和内部阻抗。首次充电过程中充电曲线发生折转,发生了"电活化"现象。这时,微晶炭片层周围的电解液离子和溶剂分子进行插层作用,利用片层空间充分储存电子以提高能量密度。煤基微晶炭的电容特性主要由插层电容和双电层电容2部分组成,其中"电活化"现象所造成的插层电容是决定微晶炭较高能量密度的主要原因。新型煤基微晶炭优异的电化学性能与其微晶结构和丰富的孔隙结构密切相关。  相似文献   

12.
《炭素》2016,(2)
采用超临界CO_2流体辅助分散技术,合成制备了Fe_2O_3/石墨烯复合材料,通过透射电子显微镜(TEM)表征结果可以看出,Fe_2O_3纳米粒子均匀的负载于石墨烯片层之上,利用其与石墨烯的协同效应,改善各自的固有缺点,增强材料的性能。X-射线能谱(XPS)和X-射线衍射(XRD)结果表明Fe_2O_3和石墨烯之间复合较为完好,且石墨烯结构较为完整,能够大大提升复合材料的导电性。将制得的增强Fe_2O_3/石墨烯复合材料用于超级电容器电极材料,通过循环伏安(CV),恒电流充放电(GCD)和交流阻抗(EIS)测试可知,电容器表现出了优异的赝电容性能,在电流密度为1 A/g时,其比电容量可以达到596 F/g,显示了优异的电化学储能性能。  相似文献   

13.
研究了氧化石墨烯(GO)负载Co-Ni催化剂原位催化聚丙烯(PP)进行三维石墨烯碳纳米杂化材料的合成,同时考察材料作为超级电容器电极的电化学应用。将乙酸钴和乙酸镍按比例加入GO水溶液中,利用聚醚胺400(D-400)将二者还原为氢氧化物并自组装负载在GO表面,制备出GO负载Co-Ni催化剂(GO/Ni-Co)。将GO/Ni-Co熔融共混到PP中,在氮气保护下裂解碳化共混得到石墨烯基碳纳米杂化材料。采用SEM、TEM、XRD和Raman等对其形貌结构进行表征。结果表明:利用该方法可成功制备一种三维石墨烯碳纳米杂化材料(RGO/C)。将所制备的RGO/C应用于超级电容器,在扫描速率为2m V/s时,最大比电容达到595F/g,并且具有良好的循环稳定性。  相似文献   

14.
以天然毛竹材为原料,通过高温炭化、活化等处理后,得到具有高比表面积的竹炭基生物质能源电池材料。通过恒流充放电、循环伏安等电化学测试方法,考察了竹炭作为超级电容器及锂离子电池电极材料时的电化学性能。结果表明:采用KOH活化后得到的竹炭,比表面积可达2366m2/g;用作超级电容器电极材料,比容量可以达到205F/g,并表现出良好的充放电效率。作为锂离子电池负极材料在200mA/g的电流密度下30次循环后仍然具有225mA·h/g,显示了竹炭具有较高的比容量及良好的循环性能和倍率性能,作为新能源材料具有广泛的应用前景。  相似文献   

15.
为了改善活性炭纤维的电化学性能、提高比电容,以硝酸镍和硝酸钴为金属源、尿素为碱源,采用水热法对一步活化法制备出的PAN基活性炭纤维(ACF)进行修饰,使其表面均匀负载海胆状的镍钴氧化物(ACF/NiCo_2O_4),通过扫描电镜、X射线衍射等对样品进行形貌和成分表征,采用三电极体系对材料进行电化学性能测试。结果表明,在1 A/g的电流密度下,其质量比电容达到469. 4 F/g,而电压降只有-0. 004 5 V,恒流充放电循环5 000圈后,其电容保持率为97. 87%,证明ACF/NiCo_2O_4材料具有较大的比电容和良好的循环稳定性,可用作超级电容器电极材料。  相似文献   

16.
竹质中孔活性炭在双电层电容器中的应用研究   总被引:1,自引:0,他引:1  
以毛竹废料为原料,采用磷酸活化法制备了具有较高比表面积又含有大量中孔的活性炭,根据77K氮气吸附等温线对其结构性质进行了表征,并以产品活性炭为电极材料组装双电层电容器,对其充放电性能进行了测试.实验结果表明:产品活性炭比表面积为1567m2/g,中孔体积为0.67cm3/g,中孔比例达47.18%.以该活性炭为电极材料的双电层电容器具有良好的充放电性能,既能以小电流长时间慢速充放电,又能以大电流短时间快速充放电,电极比电容达170F/g.在1000mA/g电流密度下,活性炭放电比电容为131F/g,比电容保持率为77%,功率特性良好.  相似文献   

17.
以新疆煤为原料,采用水蒸气活化一步法制备出多孔炭材料,考察了活化时间和原料粒度对活化过程的影响,对比了活化前脱灰和活化后脱灰的优劣.结果表明,活化时间以120min为宜,原料粒度在150μm~180μm时较优,活化后比表面积高达1 300m~2/g,收率为30%.样品脱灰适宜在活化后进行.将所制备的多孔炭材料应用于超级电容器,考察了其电容性能.结果表明,在6mol/L KOH电解液中,三电极体系材料电容值可达149F/g.两电极超级电容器具有良好的长循环稳定性,30 000次循环后容量几乎无衰减.  相似文献   

18.
石墨烯基超级电容器电极面临着层间堆叠的问题,使用独特的螺旋碳管(HCNTs)插层还原氧化石墨烯(rGO),采用自组装的方法构建3D全碳网络,直接用于无黏结剂的超级电容器电极(rGO&HCNTs),可有效减少石墨烯的堆叠。rGO包裹具有类弹簧结构的HCNTs,这种3D网络极大地增加了电极的比表面积,提高了电荷转移速率,并且全碳结构具有较好的稳定性。rGO&HCNTs电极在0.25 A/g的电流密度下,表现出296 F/g的比电容,在1 A/g的电流密度充电/放电循环3 000圈之后,比容量为初始的89%。这种复合材料是高性能超级电容器及柔性电极的潜在候选材料。  相似文献   

19.
以电石(CaC_2)为碳源,通过氧化法合成炭材料(CM),并用氢氧化钾(KOH)进一步活化,制得具有微观细孔结构的活化炭材料(ACM)。利用XRD、Raman、FT-IR测试了CM的结构。利用FESEM、BET、循环伏安法(CV)和恒流充放电(GCD)探究了活化对炭材料结构、形貌和电容性能的影响。结果表明,氧化法制得的CM具有一定程度的石墨化,同时表面发生了部分氧化。活化后炭材料表面呈疏松状,比表面积和总孔容均变大,当活化炭碱比(R_(CM/KOH))为0. 5时,比表面积为1 114. 3 m~2/g,总孔容达到0. 35 cm~3/g。炭碱比活化的炭材料ACM_(0. 5)电极在0. 64 mol/L的K_2SO_4电解质溶液中,电流密度为0. 5 A/g时,比电容达165. 47 F/g,可作为超级电容器的电极材料。  相似文献   

20.
作为一种富氮碳源,聚丙烯腈历来被作为生产炭材料的重要原料。但是聚丙烯腈直接炭化会导致其烧结不利于后续深度活化。通过干法球磨石墨烯和聚丙烯腈复合原料,结合稳定化和KOH活化,制备了杂化多孔炭,并系统研究了石墨烯和聚丙烯腈配比及后活化处理对杂化多孔炭性能的影响。结果表明:石墨烯的存在有利于高能球磨过程中热量地快速扩散,有效避免了聚丙烯腈的烧结;而聚丙烯腈进一步抑制了石墨烯片层的团聚,使石墨烯/聚丙烯腈复合前驱体呈现蓬松的粉体结构,利于碱的深度活化。同时,石墨烯在多孔炭结构中形成的三维柔性导电网络便于电荷地快速转移。由于其发达的孔、大的比表面积、优异的导电性以及氮/氧杂原子诱导的赝电容,所制备的杂化多孔炭用作超级电容器电极材料时,在水系和有机系电解液中均表现出了优异的电化学性能。尤其是,优化的HPC-4复合炭材料用作超级电容器的电极时,在1 mol/L四乙基四氟硼酸铵有机电解液中,当功率密度为337.5 W/kg时,能量密度可达30.38 W?h/kg。该工作为面向高功率兼高能量超级电容器电极材料的开发提供了一种简易且高效的制备策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号