首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
李飞  段华军  王钧  李孝兰 《塑料工业》2012,40(8):93-95,106
将不同种类的阻聚剂与2,2,6,6-四甲基哌啶氮氧自由基(TH701)进行复配使用,研究了TH701复配阻聚剂对改性不饱和聚酯树脂(UPR)的贮存稳定性和固化特性的影响。结果表明,TH701与吩噻嗪复配体系不仅能显著提高改性UPR的贮存稳定性,而且几乎不改变树脂的固化反应活性。当改性UPR中加入700×10-6TH701与50×10-6吩噻嗪组成的复配阻聚剂时,其在80℃下的贮存时间达到74 h,比单独使用TH701时的贮存时间增加了近3倍。同时运用凝胶时间测试法和DSC法推算的反应活化能,理论和实际测试结果都表明其反应活性基本不变。  相似文献   

2.
刘宏宇  冯钦  叶代勇 《电镀与涂饰》2014,33(22):977-981
为制备贮存稳定性优良的紫外光(UV)固化涂料,采用自制改性环氧丙烯酸酯树脂、活性稀释剂、光引发剂和阻聚剂制备了UV固化涂料体系并通过考察50°C下贮存7 d前后黏度的变化,研究了活性稀释剂、光引发剂和阻聚剂种类及用量对贮存稳定性的影响,并确定了最优体系:活性稀释剂w(己二醇二丙烯酸酯)=20%~30%,光引发剂w(Darocur 11733)=3.0%,阻聚剂w(对羟基苯甲醚)=0.04%。用红外光谱、凝胶渗透色谱等对贮存前后的体系进行了表征。测试了以最优体系为基础配制的UV涂料的涂膜性能。结果表明,加速贮存7 d后,涂料体系的重均分子量和数均分子量分别增加393 g/mol和403 g/mol,C═C双键含量仅损失4.9%,可见涂料具有较好的贮存稳定性,其漆膜性能与贮存前相比并无差异。  相似文献   

3.
采用交联共聚法合成了气干性酚醛环氧乙烯基树脂。研究了物料配比、阻聚剂用量、反应温度对反应的影响,测试了树脂的耐腐蚀性、气干性和力学性能。结果表明,酯化过程最佳工艺条件为:反应温度110~115℃,反应时间2.5 h,醇、酸物质的量比1.1∶2,阻聚剂质量分数0.05%,催化剂质量分数0.3%。交联聚合过程最佳工艺条件为:反应温度75~85℃反应时间2.0 h,改性剂(甲苯二异氰酸酯)加入质量5%。合成的树脂的弯曲强度为101 MPa,弯曲模量3.66 GPa,冲击强度11.4 kJ/m2,气干性、韧性、固化性能均超过同类树脂,可用于耐温强腐蚀场合以及用作表面涂层、耐温腻子基体树脂、自流平树脂等。  相似文献   

4.
采用DSC法研究了乙烯基树脂体系的固化动力学参数,并通过对该体系树脂浇铸体的固化度、力学性能、玻璃化转变温度的测试确定了最佳后固化制度。结果表明,该体系固化反应的表观活化能为56.27 kJ/mol,频率因子为4.96×107/s,反应级数为0.9;最佳后固化制度为100℃/1 h,此时固化度可达94.7%,弯曲强度可达102.6 MPa,拉伸强度可达64.1 MPa,玻璃化转变温度可达107.8℃。  相似文献   

5.
采用非等温差示扫描量热(DSC)法对纳米二氧化硅/环氧树脂/双马来酰亚胺/氰酸酯(nano-SiO2/EP/BMI/CE)树脂进行了固化反应动力学和固化工艺研究。通过Kissinger法和Ozawa法求得了nano-SiO2/EP/BMI/CE树脂体系固化反应动力学的表观活化能。结果表明:改性CE树脂体系的固化工艺参数为凝胶温度112℃、固化温度195℃及后处理温度213℃,进而确定了改性CE树脂体系的最佳固化工艺条件为"150℃/3 h→180℃/3 h→200℃/2 h";改性CE树脂体系的平均表观活化能为59.90 kJ/mol。  相似文献   

6.
利用β-甲基环氧氯丙烷与双酚A在氢氧化钠的存在下合成了一种新的甲代双酚A型缩水甘油醚环氧树脂(BPA-MECH EP)预聚物,并通过FT-IR、1H NMR、GPC等手段对产物结构进行了表征。用盐酸-丙酮滴定法测定其环氧值为0.43 mol/100 g。用DDM作固化剂,利用DSC对其添加量为树脂质量的20%时体系的固化反应动力学以及最佳固化工艺条件进行了探讨。实验结果表明:BPA-MECH/DDM固化体系的反应级数n为1.30;表观活化能为15.37 kJ/mol;最佳固化工艺条件为:120℃/1 h→140℃/1 h→175℃/3 h→200℃/1 h逐步阶段升温固化。与E-44的DDM固化物进行了性能比较,结果表明:BPA-MECH与E-44固化产物的热变形温度无显著差别,但吸水率降低了47.6%,弯曲强度和弯曲模量分别提高了10.5%和7.8%,冲击强度上升了129.4%,拉伸强度、弹性模量以及断裂伸长率都有不同程度的提高,最大增幅分别为27.6%、25.9%和12.9%。研究结果表明,甲代双酚A型缩水甘油醚环氧树脂是一种性能优良的环氧树脂预聚物。  相似文献   

7.
通过对芳基乙炔树脂的固化动力学研究确定其适宜的固化工艺。采用DSC和流变分析得到芳基乙炔树脂的特征固化参数及其固化度与温度的关系曲线。结果表明,树脂的起始反应温度为127.1℃,反应峰值温度164.2℃,终止反应温度195.1℃。固化动力学参数为:表观活化能E=190.12kJ/mol,反应级数n=1.87,频率因子A=1.995×1019。芳基乙炔树脂的加压固化温度为110~115℃,其起始固化温度为115℃。固化工艺为:115℃/8h+120℃/8h+140℃/2h+160℃/2h+180℃/2h+200℃/2h+220℃/4h。芳基乙炔树脂凝胶前固化过程由化学反应控制,凝胶后属于扩散控制,因此在凝胶时需延长固化时间。  相似文献   

8.
研究添加不同量的络合剂和阻聚剂对双组分丙烯酸酯胶性能的影响,双组分丙烯酸酯胶按A∶B=1∶1的比例混合,通过改变络合剂或阻聚剂的添加量,来测试双组分丙烯酸酯胶的固化时间、贮存时间、剪切强度以及冲击强度,进而判断络合剂和阻聚剂对丙烯酸酯胶粘剂性能的影响,通过测试结果可得出在80℃热储的条件下,加入适当的络合剂和阻聚剂可以有效提高丙烯酸酯胶的贮存稳定性,但是随着添加量的增大会使固化时间延长,而络合剂和阻聚剂的添加量变化对剪切强度及冲击强度的影响不大,故综合贮存时间与固化时间来确定络合剂的最佳用量为0.02%~0.04%之间,阻聚剂的最佳用量在0.015%~0.02%之间才能更好地发挥络合剂与阻聚剂的作用。  相似文献   

9.
采用粘度测试和动态DSC分析研究了MA型苯并恶嗪树脂体系的流变特性及不同工艺条件下的固化反应过程。结果表明:95~115℃时,树脂体系粘度500 mPa.s的时间可达350 min;树脂体系的凝胶温度为185℃,固化温度为213℃,后处理温度为248℃;根据Arrhenius公式求得体系的表观反应活化能为87.5 kJ/mol;树脂体系的固化工艺为130℃/3 h+140℃/1 h+150℃/1 h+160℃/1 h+170℃/1 h+180℃/2 h+210℃/2 h,后处理工艺为250℃/2 h。  相似文献   

10.
采用Q600型同步热分析仪研究了氰酸酯的热固化过程,确定了固化工艺参数,根据Kissinger及Ozawa方程分别计算出固化活化能,并通过红外光谱法得到不同固化阶段氰酸酯的转化率。结果表明,氰酸酯可以在同步热分析仪炉内固化,固化工艺条件为:229℃/2 h+269℃/4 h+313℃/2 h,固化活化能分别为76.31 kJ/mol和81.70 kJ/mol,CE单体转化率为97.43%,固化过程中失重为8.5%。利用同步热分析研究氰酸酯固化过程是可行的。  相似文献   

11.
通过凝胶时间测定、差示扫描量热分析、FT-IR分析研究了乙酰丙酮镍催化含硅芳炔树脂体系的固化反应行为,并计算了反应动力学参数. 结果表明,乙酰丙酮镍对含硅芳炔树脂固化有显著的催化作用,加入0.2%(w)乙酰丙酮镍可较大幅度降低树脂固化反应的活化能和温度,初始固化温度降低约35℃,固化反应活化能为104.2 kJ/mol,比含硅芳炔树脂的固化活化能(121.2 kJ/mol)低;乙酰丙酮镍催化含硅芳炔树脂可发生Glaser偶合、Strauss偶合、环三聚、Diels-Alder和固化反应;树脂固化物保持优异的热稳定性,在氮气气氛下5%失重温度为620℃, 1000℃时残留率为87.8%.  相似文献   

12.
以桐油的甲醇酯交换产物桐酸甲酯和丙烯酸为原料,通过Diels-Alder加成反应合成了C21二元酸单甲酯(TMAA),桐酸甲酯和丙烯酸的加成温度为180℃,反应时间3 h,比通用C21二元酸的合成反应温度低70℃。然后用C21二元酸单甲酯和不同多元胺酰胺化制备了3种不同胺值的C21二酸聚酰胺环氧固化剂。机械性能测试显示,C21二元酸聚酰胺和双酚A环氧树脂(DGEBA)的环氧固化物和C36二聚酸聚酰胺650C的DGEBA固化物相比,具有更高的机械强度和模量。胺值为496 mg/g的C21二元酸聚酰胺与DGEBA的固化产物拉伸强度达58.63 MPa,断裂伸长率为3.27%,弹性模量达2 635.84 MPa,弯曲强度达99.9 MPa。差示扫描热分析法(DSC)测得C21二元酸聚酰胺的DGEBA固化物的玻璃化温度分别为108、109和116℃,比C36二聚酸聚酰胺的DGEBA固化物的玻璃化温度高出50℃左右。n级反应机理求取的3种固化剂与DGEBA的固化反应活化能分别为62.179、56.551和59.761 kJ/mol,比C36二聚酸聚酰胺与DGEBA的固化反应活化能高出约10 kJ/mol。固化反应动力学得出固化剂与DGEBA的凝胶温度、固化温度和后固化温度分别为40、90和150℃左右。  相似文献   

13.
TDE-85/DDM固化体系性能研究   总被引:3,自引:0,他引:3  
采用胶化时间与DTA分析,研究了TDE-85/DDM体系的固化工艺,根据Kissinger方程和Oza-wa方程,得到体系的活化能与反应级数,并对浇铸体的力学性能及断口形貌进行了分析。结果表明,TDE-85/DDM体系的固化工艺为80℃/3h+120℃/4h+180℃/4h,活化能为42.74KJ/mol,反应级数为0.9506,机械性能较高,是一种强而韧的基体。  相似文献   

14.
新型环氧树脂胶粘剂的固化动力学研究   总被引:4,自引:0,他引:4  
在不同升温速率下采用非等温差示扫描量热(DSC)技术对一种新型改性环氧树脂胶粘剂的固化反应过程进行了跟踪,并利用Kissinger、crane方程以及Arrhenius方程对该固化反应进行了动力学分析。结果表明,该固化反应的活化能为59.18kJ/mol,反应级数为0.89;结合Dsc谱图确定其固化工艺为130℃/1h+150℃/2h+175℃/3h。  相似文献   

15.
聚酰亚胺改性环氧树脂/酸酐体系固化动力学研究   总被引:2,自引:1,他引:1  
采用非等温差示扫描量热(DSC)法研究了聚酰亚胺(PI)改性环氧树脂(EP)/酸酐体系的固化反应动力学及其固化工艺。通过Kissinger法、Ozawa法和Crane法计算出该体系的动力学参数。结果表明:该固化体系具有较高的活性,其固化工艺条件为"80℃/2 h→120℃/2 h",后处理工艺为150℃/2 h;采用Kissinger法和Ozawa法计算出该体系的平均表观活化能为8.24 kJ/mol;结合Crane方程计算出该体系的反应级数为0.95,近似一级反应。  相似文献   

16.
采用马来酸酐单体(MA)对双酚A型环氧树脂(E-51)改性,得到改性环氧树脂(EpM),通过正交实验法确定了改性树脂的制备及固化工艺,并通过红外光谱和热失重分析对产物及固化物进行了表征。结果表明,EpM最佳制备工艺:催化剂N,N-二甲基苯胺添加质量分数2.0%,阻聚剂质量分数0.075%(基于对苯二酚),反应温度80℃,反应时间2.0 h。固化最佳工艺:氧化剂过氧化苯甲酰添加质量分数2%,促进剂N,N-二甲基苯胺质量分数0.6%,交联剂苯乙烯质量分数20%。EpM的合成机理为环氧开环酯化反应;产物中出现了马来酸酐的特征官能团;其热分解温度可提高到418℃;漆膜耐腐蚀性、附着力、冲击强度均有提高。  相似文献   

17.
测定了三种α-甲基丙烯酸钝化2-乙基-4-甲基咪唑固化环氧树脂(EP)体系的凝胶时间及固化反应放热曲线,制定了EP固化体系的固化工艺条件,并对这三种EP固化体系的室温(20℃)储存特性及其浇铸体的综合性能进行了比较。结果表明:这三种EP固化体系均可在80℃时快速固化,浇铸体的固化工艺条件为80℃/4 h;当m(E-51)∶m(Eg-031)∶m(固化剂)=25∶25∶2时,EP固化体系预浸料具有最长的储存期(15 d),是综合性能优良的低成本复合材料制造用基体树脂,其弯曲强度、弯曲模量、冲击强度和热变形温度分别为109.3 MPa、3.0 GPa、7.76 kJ/m2和125℃。  相似文献   

18.
改性BMI/苯并噁嗪树脂的固化反应及其动力学研究   总被引:2,自引:1,他引:1  
将改性双马来酰亚胺(BMI)树脂与苯并噁嗪(B-a)树脂进行共混共聚制备了改性BMI/B-a树脂,采用动态DSC技术研究了改性BMI/B-a树脂的固化反应过程。实验结果表明,在100~350℃范围内出现两个峰,其中100~153℃是树脂的熔融吸热峰(峰顶温度为134℃),156~303℃是树脂固化反应过程的放热峰(峰顶温度为232℃);改性BMI树脂与B-a树脂的固化反应级数为0.93,活化能为85.6 kJ/mol;改性BMI/B-a树脂的固化工艺为180℃×1 h+200℃×2 h+230℃×2 h,后处理工艺为280℃×2 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号