首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Investigation into resonant-cavity-enhanced (RCE) HgCdTe detectors has revealed a discrepancy in the refractive index of the CdTe layers grown by molecular beam epitaxy (MBE) for the detectors, compared with the reported value for crystalline CdTe. The refractive index of the CdTe grown for RCE detectors was measured using ellipsometry and matches that of CdTe with an inclusion of approximately 10% voids. X-ray measurements confirm that the sample is crystalline and strained to match the lattice spacing of the underlying Hg(1−x)Cd(x)Te, while electron diffraction patterns observed during growth indicate that the CdTe layers exhibit some three-dimensional structure. Secondary ion mass spectroscopy results further indicate that there is enhanced interdiffusion at the interface between Hg(1−x)Cd(x)Te and CdTe when the Hg(1−x)Cd(x)Te is grown on CdTe, suggesting that the defects are nucleated within the CdTe layers.  相似文献   

2.
High-quality, single-crystal epitaxial films of CdTe(112)B and HgCdTe(112)B have been grown directly on Si(112) substrates without the need for GaAs interfacial layers. The CdTe and HgCdTe films have been characterized with optical microscopy, x-ray diffraction, wet chemical defect etching, and secondary ion mass spectrometry. HgCdTe/Si infrared detectors have also been fabricated and tested. The CdTe(112)B films are highly specular, twin-free, and have x-ray rocking curves as narrow as 72 arc-sec and near-surface etch pit density (EPD) of 2 × 106 cm−2 for 8 μm thick films. HgCdTe(112)B films deposited on Si substrates have x-ray rocking curve FWHM as low as 76 arc-sec and EPD of 3-22 × 106 cm−2. These MBE-grown epitaxial structures have been used to fabricate the first high-performance HgCdTe IR detectors grown directly on Si without use of an intermediate GaAs buffer layer. HgCdTe/Si infrared detectors have been fabricated with 40% quantum efficiency and R0A = 1.64 × 104 Ωm2 (0 FOV) for devices with 7.8 μm cutoff wavelength at 78Kto demonstrate the capability of MBE for growth of large-area HgCdTe arrays on Si.  相似文献   

3.
Extensive material, device, and focal plane array (FPA) reproducibility data are presented to demonstrate significant advances made in the molecular beam epitaxial (MBE) HgCdTe technology. Excellent control of the composition, growth rate, layer thickness, doping concentration, dislocation density, and transport characteristics has been demonstrated. A change in the bandgap is readily achieved by adjusting the beam fluxes, demonstrating the flexibility of MBE in responding to the needs of infrared detection applications in various spectral bands. High performance of photodiodes fabricated on MBE HgCdTe layers reflects on the overall quality of the grown material. The photodiodes were planar p-on-n junctions fabricated by As ion-implantation into indium doped, n-type, in situ grown double layer heterostructures. At 77K, diodes fabricated on MBE Hg1−xCdxTe with x ≈ 0.30 (λco 5.6 μm), x ≈ 0.26 (λco 7 μm), x ≈ 0.23 (λco ≈ 10 μm) show R0A products in excess of 1 x 106 ohm-cm2, 7 x 105 ohm-cm2, and 3 x 102 ohm-cm2, respectively. These devices also show high quantum efficiency. As a means to assess the uniformity of the MBE HgCdTe material, two-dimensional 64 x 64 and 128 x 128 mosaic detector arrays were hybridized to Si multiplexers. These focal plane arrays show an operability as high as 97% at 77K for the x ≈ 0.23 spectral band and 93% at 77K for the x ≈ 0.26 spectral band. The operability is limited partly by the density of void-type defects that are present in the MBE grown layers and are easily identified under an optical microscope.  相似文献   

4.
Large-area high-quality Hg1–x Cd x Te sensing layers for infrared imaging in the 8 μm to 12 μm spectral region are typically grown on bulk Cd1–x Zn x Te substrates. Alternatively, epitaxial CdTe grown on Si or Ge has been used as a buffer layer for high-quality epitaxial HgCdTe growth. In this paper, x-ray topographs and rocking-curve full-width at half-maximum (FWHM) data will be presented for recent high-quality bulk CdZnTe grown by the vertical gradient freeze (VGF) method, previous bulk CdZnTe grown by the vertical Bridgman technique, epitaxial CdTe buffer layers on Si and Ge, and a HgCdTe layer epitaxially grown on bulk VGF CdZnTe.  相似文献   

5.
High-quality (211)B CdTe buffer layers on Si substrates are required to enable Hg1–x Cd x Te growth and device fabrication on lattice-mismatched Si substrates. Metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si substrates using Ge and ZnTe interlayers has been achieved. Cyclic annealing has been used during growth of thick CdTe layers in order to improve crystal quality. The best (211)B CdTe/Si films grown in this study display a low x-ray diffraction (XRD) rocking-curve full-width at half-maximum (FWHM) of 85 arcsec and etch pit density (EPD) of 2 × 106 cm−2. These values are the best reported for MOVPE-grown (211) CdTe/Si and are comparable to those for state-of-the-art molecular beam epitaxy (MBE)-grown CdTe/Si.  相似文献   

6.
Growth of Hg1−xCdxTe by molecular beam epitaxy (MBE) has been under development since the early 1980s at Rockwell Scientific Company (RSC), formerly the Rockwell Science Center; and we have shown that high-performance and highly reproducible MBE HgCdTe double heterostructure planar p-on-n devices can be produced with high throughput for various single- and multiplecolor infrared applications. In this paper, we present data on Hg1−xCdxTe epitaxial layers grown in a ten-inch production MBE system. For growth of HgCdTe, standard effusion cells containing CdTe and Te were used, in addition to a Hg source. The system is equipped with reflection high energy electron diffraction (RHEED) and spectral ellipsometry in addition to other fully automated electrical and optical monitoring systems. The HgCdTe heterostructures grown in our large ten-inch Riber 49 MBE system have outstanding structural characteristics with etch-pit densities (EPDs) in the low 104 cm−2 range, Hall carrier concentration in low 1014 cm−3, and void density <1000 cm2. The epilayers were grown on near lattice-matched (211)B Cd0.96Zn0.04Te substrates. High-performance mid wavelength infrared (MWIR) devices were fabricated with R0A values of 7.2×106 Ω-cm2 at 110 K, and the quantum efficiency without an antireflection coating was 71.5% for cutoff wavelength of 5.21 μm at 37 K. For short wavelength infrared (SWIR) devices, an R0A value of 9.4×105 Ω-cm2 at 200 K was obtained and quantum efficiency without an antireflection coating was 64% for cutoff wavelength of 2.61 μm at 37 K. These R0A values are comparable to our trend line values in this temperature range.  相似文献   

7.
Reproducible improvements in the metalorganic vapor phase epitaxy (MOVPE) grown CdTe buffer quality have been demonstrated in a horizontal rectangular duct silica reactor by the use of integratedin situ monitoring that includes laser reflectometry, pyrometry, and Epison concentration monitoring. Specular He-Ne laser reflectance was used toin situ monitor the growth rates, layer thickness, and morphology for both ZnTe and CdTe. The substrate surface temperature was monitored using a pyrometer which was sensitive to the 2–2.6 μm waveband and accurate to ±1°C. The group II and group VI precursor concentrations entering the reactor cell were measured simultaneously using two Epison ultrasonic monitors and significant variations were observed with time, in particular for DIPTe. The surface morphology and growth rates were studied as a function of VI/II ratio for temperatures between 380 and 460°C. The background morphology was the smoothest for VI/IIratio in the vicinity of 1.5–1.75 and could be maintained using Epison monitors. Regularly shaped morphological defects were found to be associated with morphological defects in the GaAs/Si substrate. The x-ray rocking curve widths for CuKα (531) reflections were in the range of 2.3–3.6 arc-min, with no clear trend with changing VI/II ratio. X-ray topography images of CdTe buffer layers on GaAs/Si showed a mosaic structure that is similar to CdTe/sapphire substrates. The etch pit density in Hg1-xCdxTe layers grown onto improved buffer layers was as low as 6 x 106 cm-2 for low temperature MOVPE growth using the interdiffused multilayer process.  相似文献   

8.
(lll)B CdTe layers free of antiphase domains and twins were directly grown on (100) Si 4°-misoriented toward<011> substrates, using a metalorganic tellurium (Te) adsorption and annealing technique. Direct growth of (lll)B CdTe on (100) Si has three major problems: the etching of Si by Te, antiphase domains, and twinning. Te adsorption at low temperature avoids the etching effect and annealing at a high temperature grows single domain CdTe layers. Te atoms on the Si surface are arranged in two stable positions, depending on annealing temperatures. We evaluated the characteristics of (lll)B CdTe and (lll)B HgCdTe layers. The full width at half maximum (FWHM) of the x-ray double crystal rocking curve (DCRC) showed 146 arc sec at the 8 |im thick CdTe layers. In Hg1−xCdxJe (x = 0.22 to 0.24) layers, the FWHMs of the DCRCs were 127 arc sec for a 7 (im thick layer and 119 arc sec for a 17 (im thick layer. The etch pit densities of the HgCdTe were 2.3 x 106 cm2 at 7 ^m and 1.5 x 106 cm-2 at 17 um.  相似文献   

9.
In this paper, we show the versatility of using molecular-beam epitaxy (MBE) for the growth of the mercury cadmium telluride (HgCdTe) system. Abrupt composition profiles, changes in doping levels or switching doping types are easily performed. It is shown that high-quality material is achieved with Hg(1–x)Cd x Te grown by MBE from a cadmium mole fraction of x = 0.15 to x = 0.72. Doping elements incorporation as low as 1015 cm−3 for both n-type and p-type material as well as high incorporation levels >1018 cm−3 for both carrier types were achieved. X-ray curves, secondary-ion mass spectrometry (SIMS) data, Hall data, the influence of doping incorporation with cadmium content and growth rate, etch pit density (EPD), composition uniformity determined from Fourier-transform infrared (FTIR) transmission spectro- scopy, and surface defect maps from low to high x values are presented to illustrate the versatility and quality of HgCdTe material grown by MBE. All data presented in this work are from layers grown on silicon (112) substrate.  相似文献   

10.
High-quality (211)B CdTe buffer layers are required during Hg1−x Cd x Te heteroepitaxy on Si substrates. In this study, direct metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si, as well as CdTe on Si using intermediate Ge and ZnTe layers, has been achieved. Tertiary butyl arsine was used as a precursor to enable As surfactant action during CdTe MOVPE on Si. The grown CdTe/Si films display a best x-ray diffraction rocking-curve full-width at half-maximum of 64 arc-s and a best Everson etch pit density of 3 × 105 cm−2. These values are the best reported for MOVPE-grown (211)B CdTe/Si and match state-of-the-art material grown using molecular-beam epitaxy.  相似文献   

11.
A technology has been elaborated and photodetector modules based on Hg1−x CdxTe/GaAs heterostructures and GaAs/AlGaAs multiquantum-well structures grown by molecular-beam epitaxy were fabricated for the 3–5 and 8–12 μm spectral ranges. The photosensitive HgCdTe layers were grown on the GaAs substrates with the intermediate buffer layer of CdZnTe. To decrease the surface effect on the recombination processes, the graded-gap Hg1−x CdxTe layers with x increasing towards the surface were grown. A silicon multiplexer was designed and fabricated by CMOS/CCD technology with a frame rate of 50 Hz. The hybrid microassembly of the photodetector array and the multiplexer was produced by group cold welding on indium columns while monitoring the connection process. The fabricated 128×128 modules based on HgCdTe layers with the cutoff wavelengths 6 and 8.7 μm had a temperature resolution of 0.02 K and 0.032 K, respectively, at a temperature of 78 K and a frame rate of 50 Hz. The photosensitive GaAs/AlGaAs multilayer quantum well structures were fabricated by MBE. It is shown that the technology developed allows 128×128 multielement photodetector arrays (λpeak=8 μm) to be produced with a temperature resolution of 0.021 K and 0.06 K at operating temperatures of 54 K and 65 K, respectively. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 9, 2001, pp. 1159–1166. Original Russian Text Copyright ? 2001 by Ovsyuk, Sidorov, Vasil’ev, Shashkin.  相似文献   

12.
In the past several years, we have made significant progress in the growth of CdTe buffer layers on Si wafers using molecular beam epitaxy (MBE) as well as the growth of HgCdTe onto this substrate as an alternative to the growth of HgCdTe on bulk CdZnTe wafers. These developments have focused primarily on mid-wavelength infrared (MWIR) HgCdTe and have led to successful demonstrations of high-performance 1024×1024 focal plane arrays (FPAs) using Rockwell Scientific’s double-layer planar heterostructure (DLPH) architecture. We are currently attempting to extend the HgCdTe-on-Si technology to the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) regimes. This is made difficult because the large lattice-parameter mismatch between Si and CdTe/HgCdTe results in a high density of threading dislocations (typically, >5E6 cm−2), and these dislocations act as conductive pathways for tunneling currents that reduce the RoA and increase the dark current of the diodes. To assess the current state of the LWIR art, we fabricated a set of test diodes from LWIR HgCdTe grown on Si. Silicon wafers with either CdTe or CdSeTe buffer layers were used. Test results at both 78 K and 40 K are presented and discussed in terms of threading dislocation density. Diode characteristics are compared with LWIR HgCdTe grown on bulk CdZnTe.  相似文献   

13.
Surface-void defects observed in Hg1−xCdxTe (x ∼ 0.2–0.4) alloys grown by molecular-beam epitaxy (MBE) have been investigated using scanning and high-resolution transmission-electron microscopy (HRTEM) as well as atomic force microscopy (AFM). These surface craters, which have been attributed to Hg-deficient growth conditions, were found to originate primarily within the HgCdTe epilayer, rather than at the CdZnTe substrate, and they were associated with the local development of polycrystalline morphology. High-resolution observations established the occurrence of finely spaced HgCdTe/Te intergrowths with semicoherent and incoherent grain boundaries, as well as small HgCdTe inclusions embedded within the Te grains. This study is the first time that high-resolution electron microscopy has been used to investigate this type of defect.  相似文献   

14.
We report on the first successful growth of the quaternary alloy Cd1−yZnySexTe1−x(211) on 3-in. Si(211) substrates using molecular beam epitaxy (MBE). The growth of CdZnSeTe was performed using a compound CdTe effusion source, a compound ZnTe source, and an elemental Se effusion source. The alloy compositions (x and y) of the Cd1−yZnySexTe1−x quaternary compound were controlled through the Se/CdTe and ZnTe/CdTe flux ratios, respectively. Our results indicated that the surface morphology of CdZnSeTe improves as the Zn concentration decreases, which fits well with our previous observation that the surface morphology of CdZnTe/Si is poorer than that of CdSeTe/Si. Although the x-ray full-width at half-maximums (FWHMs) of CdZnSeTe/Si with 4% of Zn + Se remain relatively constant regardless of the individual Zn and Se concentrations, etched-pit density (EPD) measurements exhibit a higher dislocation count on CdZnSeTe/Si layers with about 2% Zn and Se incorporated. The enhancement of threading dislocations in these alloys might be due to an alloy disorder effect between ZnSe and CdTe phases. Our results indicate that the CdZnSeTe/Si quaternary material with low Zn or low Se concentration (less than 1.5%) while maintaining 4% total Zn + Se concentration can be used as lattice-matching composite substrates for long-wavelength infrared (LWIR) HgCdTe as an alternative for CdZnTe/Si or CdSeTe/Si.  相似文献   

15.
Alternate substrates for molecular beam epitaxy growth of HgCdTe including Si, Ge, and GaAs have been under development for more than a decade. MBE growth of HgCdTe on GaAs substrates was pioneered by Teledyne Imaging Sensors (TIS) in the 1980s. However, recent improvements in the layer crystal quality including improvements in both the CdTe buffer layer and the HgCdTe layer growth have resulted in GaAs emerging as a strong candidate for replacement of bulk CdZnTe substrates for certain infrared imaging applications. In this paper the current state of the art in CdTe and HgCdTe MBE growth on (211)B GaAs and (211) Si at TIS is reviewed. Recent improvements in the CdTe buffer layer quality (double crystal rocking curve full-width at half-maximum?≈?30?arcsec) with HgCdTe dislocation densities of ≤106?cm?2 are discussed and comparisons are made with historical HgCdTe on bulk CdZnTe and alternate substrate data at TIS. Material properties including the HgCdTe majority carrier mobility and dislocation density are presented as a function of the CdTe buffer layer quality.  相似文献   

16.
Using the molecular beam epitaxial (MBE) technique, CdTe and Hg1-xCdxTe have been grown on Cr-doped GaAs (100) sub-strates. A single effusion cell charged with polycrystal-line CdTe is used for the growth of CdTe films. The CdTe films grown at 200 °C with a growth rate of ~ 2 μm/hr show both streaked and “Kikuchi” patterns, indicating single crystalline CdTe films are smoothly grown on the GaAs sub-strates. A sharp emission peak is observed at near band-edge (7865 Å, 1.577 eV) in the photoluminescence spectrum at 77 K. For the growth of Hg1-xCdxTe films, separate sources of HgTe, Cd and Te are used. Hg0.6Cd0.4Te films are grown at 50 °C with a growth rate of 1.7 μm/hr. The surfaces are mirror-smooth and the interfaces between the films and the substrates are very flat and smooth. As-grown Hg0.6Cd0.4Te films are p-type and converted into n-type by annealing in Hg pressure. Carrier concentration and Hall mobility of an annealed Hg0.6Cd0.4Te film are 1 × 1017 cm?3 and 1000 cm2/V-sec at 77 K, respectively.  相似文献   

17.
Results of large-area (up to 1000 cm2/run) Cd1-xZnxTe heteroepitaxy on both GaAs and GaAs/Si substrates by metalorganic chemical vapor deposition (MOCVD) are presented. Cd1-xZnxTe (x = 0-0.1) films exhibited specular surface morphology, 1% thickness uniformity (standard deviation), and compositional uniformity (Δx) of ±0.002 over 100 mm diam substrates. For selected substrate orientations and deposition conditions, the only planar defects exhibited by (lll)B Cd1-xZnxTe/GaAs/Si films were lamella twins parallel to the CdTe/GaAs interface; these do not propagate through either the Cd1-xZnxTe layer or subsequently deposited liquid phase epitaxy (LPE) HgCdTe layer(s). Background Ga and As-impurity levels for Cd1-xZnxTe on GaAs/Si substrates were below the secondary ion mass spectroscopy detection limit. Preliminary results of HgCdTe liquid phase epitaxy using a Te-rich melt on Si-based substrates resulted in x-ray rocking curve linewidths as narrow as 72 arc-sec and etch-pit densities in the range 1 to 3 x 106 cm2.  相似文献   

18.
研究了利用GaAs作为衬底的HgCdTe MBE薄膜的表面缺陷,发现其中一类缺陷与Hg源中杂质有关。采用SEM对这类缺陷进行正面和横截面的观察,并采用EDX对其正面和横截面进行成分分析。并设计了两个实验:其一,在CdTe/GaAs衬底上,低温下用Hg源照射20min,再在其上继续高温生长CdTe;其二,在CdTe/GaAs衬底上,一直用Hg源照射下高温生长CdTe。两个实验后CdTe表面都出现与HgCdTe表面相比在形状和分布上类似的表面缺陷,采用光学显微镜和SEM对CdTe表面缺陷进行了观察,通过CdTe表面缺陷和HgCdTe表面缺陷的比较,我们证实了这类表面缺陷的成核起源于Hg源中杂质。  相似文献   

19.
High-density argon-hydrogen plasmas have been demonstrated to be very effective as etchants of CdTe, CdZnTe, and HgCdTe materials for focal plane array applications. Understanding the physical, chemical, and electrical characteristics of these surfaces is critical in elucidating the mechanisms of processing Hg1−xCdxTe. The ways in which these plasmas interact with HgCdTe, such as etch rates and loading, have been studied.1–11 However, little is known on how these plasmas affect the first few atomic layers of HgCdTe. In this study, the effects of high-density plasmas on the surface of HgCdTe were examined. The combination of argon and hydrogen plasma etch leaves a well-ordered, near-stoichiometric surface determined by both x-ray photoelectron spectroscopy and reflection high-energy electron diffraction (RHEED). Starting with Hg0.78Cd0.22Te, we were able to produce surfaces with x=0.4 and a RHEED pattern sharp enough to measure 2×1 reconstruction.  相似文献   

20.
Crystal defects of chemical vapor transport grown Hg1−xCdxTe on (100) CdTe structures have been investigated using chemical etching, wavelength-dispersive spectroscopy, x-ray rocking curve, and scanning electron microscopy methods The results indicate that the origin and spatial distribution of the misfit dislocations can be attributed to both the lattice parameter misfit and the inevitable interdiffusion occurring between the substrate and the epitaxial layer. It is proposed that the interdiffusion of Hg along the [100] direction is enhanced by dislocation channels and other defect cores along or near this direction owing to defects on the initial surface of the CdTe substrate. The results indicate that the subgrain boundaries in Hg1−xCdxTe are caused by slight misorientation of the lattices and polygonization of the defects during epitaxial layer growth, and by the propagation of the subgrain boundaries existing in the CdTe substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号