首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
ABSTRACT

In recent years, the ultrafine grinding (UFG) process has become increasingly important for the recovery of precious metals (especially for Au and Ag) from raw ores. It is well known that cyanide leaching of gold–silver ore has been an accepted process in the world. In the current study, UFG was proposed as a pretreatment method prior to cyanide leaching of a gold–silver ore. First, the ore was crushed and ground by jaw, cone crusher, and ring mill, respectively. Particle size of ground product was 75 µm based d80. Second, the fine product was subjected to the grinding process by vertical wet stirred ball mill, and the final ultrafine product was used as leach feed material. The leach feed material had about d80 = 20 µm and d50 = 6.02 µm particle size. Some important leaching parameters were optimized by using the ultrafine powder in the study. The final leach experiments demonstrated that the recoveries of Au and Ag were 91.92% and 82.15% under optimum leaching conditions such as 150 kg/t quicklime dosage, 25% pulp density, 85°C leach temperature, 500 g/t cyanide concentration, and 90 h leaching time.  相似文献   

2.
In order to improve machining efficiency of sapphire wafer machining using the conventional loose abrasive process, fixed-abrasive diamond plates are investigated in this study for sapphire wafer grinding. Four vitrified bond diamond plates of different grain sizes (40?µm, 20?µm, 7?µm, and 2.5?µm) are developed and evaluated for grinding performance including surface roughness, surface topography, surface and subsurface damage, and material removal rate (MRR) of sapphire wafers. The material removal mechanisms, wafer surface finish, and quality of the diamond plates are also compared and discussed. The experiment results demonstrate that the surface material is removed in brittle mode when sapphire wafers are ground by the diamond plates with a grain size of 40?µm and 20?µm, and in ductile mode when that are ground by the diamond plates of grain sizes of 7?µm and 2.5?µm. The highest MRR value of 145.7?µm/min is acquired with the diamond plate with an abrasive size of 40?µm and the lowest surface roughness values of 3.5?nm in Ra is achieved with the 2.5?µm size.  相似文献   

3.
An experimental practice on the ultra-fine wet grinding of calcite ore in a conventional batch ball mill is reported. In this study, the effect of wet grinding conditions on the production of fine particles was researched. The influence of operating parameters such as operation speed (% of critical speed), ball filling ratio, calcite filling ratio, pulp density, ball size distribution, and grinding time on the grindability of calcite ore was systematically examined. Experimental results were evaluated on the basis of d80 product size. As a result of this study, optimum experimental conditions were found to be 80% of critical speed for operation speed, 35% for ball filling ratio, 15% for calcite filling ratio, 75% for pulp density, 50% (1 cm) and 50% (2 cm) for ball size distribution, and 60 min for grinding time. It was found that the best product has d10 = 1.51, d50 = 12.53, and d80 = 30.02 µm particle size and its steepness factor is 3.75. The outcomes indicate that the wet grinding technique in conventional ball mill for calcite ore is effective to obtain ultra-fine size products.  相似文献   

4.
The main objective of the present paper was to experimentally investigate the grinding kinetics of red grape seed which is the by-product of winery and juice industry. Stirred media mill was used as a high energy density mill to improve the raw grape seed fineness, i.e. mean particle size approx. 10 µm using various rotor circumferential velocities under dry condition. The effect of stress intensity and stress number on the particle size distribution of ground grape seed was investigated. Optimum conditions (rotor velocity and residence time) were determined, mean particle size close to 10 µm and 5000 cm2/g geometric specific surface area were reached within the studied variables. Additionally, concerning the material structure, FTIR measurements of the ground grape seed samples were carried out which demonstrated that no structural changes were detected. Furthermore, the specific grinding work was measured for each test, in this way energy utilization, efficiency was determined.  相似文献   

5.
An experimental study on the improvement of particle size distribution of calcite powder (d50 = 3.23 μm) was carried out. Ultrafine grinding of calcite powder was studied under batch wet conditions in a laboratory stirred mill. After grinding, the suspension was allowed to age at 30°C for 12 and 24 h. The results indicated that the fineness narrow particle size distribution is influenced to a small extent by altering some operating parameters, such as suspension temperature and aging time. Further increase in the fineness narrow particle size distribution is likely with additional optimization work on the operating parameters of aging process.  相似文献   

6.
以磁选热闷渣、未磁选热闷渣、电炉渣和风淬渣作为研究对象,以乙二醇、三乙醇胺和无水乙醇制备钢渣助磨剂,钢渣助磨剂与钢渣进行复合获得钢渣超微粉。将钢渣超微粉与炭黑N220、促进剂、硫磺、 ZnO、硬脂酸、天然橡胶进行复合,制备钢渣超微粉/橡胶复合材料。研究钢渣种类和钢渣助磨剂用量对钢渣超微粉/橡胶复合材料力学性能和阻燃性能的影响。利用XRF、 XRD、 LPSA和FTIR对化学成分、矿物组成、粒度分布和组成结构进行测试。结果表明,以电炉渣制备的钢渣超微粉/橡胶复合材料的力学性能最佳,以磁选热闷渣或未磁选热闷渣制备的钢渣超微粉/橡胶复合材料的阻燃性能最佳。钢渣助磨剂可以减小钢渣超微粉的粒度尺寸,改善钢渣超微粉的粒度分布均匀程度。随着钢渣助磨剂用量的增加,钢渣超微粉的粒度分布均匀程度改善,钢渣超微粉/橡胶复合材料的力学性能提高,阻燃性能降低。  相似文献   

7.
The separation of ultrafine coal is inefficient due to the low settling velocity in centrifugal field. The feasibility of increasing particle size by flocculation to increase the separation efficiency is verified. The effect of flocculant on the size distribution of ultrafine coal was tested. The effect of flocculant dose on deash and desulfurization efficiency was studied to determine the appropriate dosage. Further, influence of the main operating parameters of the concentrator, including centrifugal force and water counter pressure on the separation performance, was studied. In addition, a comparative test was designed to verify the stability of the flocs. Results showed that the size of ultrafine coal particles could be effectively increased by the addition of flocculant, and the yield of ?0.045 µm fraction was decreased from 50% to 17% when the flocculant dosage was 10 g/t. The combustible material recovery of clean coal increased from 58% to 66%; meanwhile, the ash content reduced from 16.7% to 14.6%. In addition, combustible matter recovery and desulphurization efficiency decreased with the increase of centrifugal force, while they increased with the water counter pressure. Results of comparison tests of ultrafine coal with flocculant pretreatment and artificial coal with the same size composition showed that the latter had greater combustible recovery and desulfurization efficiency.  相似文献   

8.
Present experimental investigation is directed toward the optimization of dressing infeed for silicon carbide (SiC) wheel to be employed for grinding difficult-to-machine super alloy Ti-6Al-4V. Grinding wheels are dressed using separate, however, identical 0.75 carat single point diamond dressers at 5, 10, 15, 20 and 25 µm infeed values. Differently dressed wheels are consequently, applied for grinding Ti-6Al-4V under different infeed values of 5, 10 and 15 µm. All the operations have been performed at a constant velocity of 1810 m/min. The performances of the differently dressed SiC wheels are evaluated based on the variations of grinding force components, average surface roughness values, grinding ratio, chip forms and based on the analyses of the micrographs of wheel topologies and also of the ground surfaces, obtained using scanning electron microscope. Following the performance evaluation, the optimized dressing infeed has been found to be 20 µm for the operation range considered herein.  相似文献   

9.
Fine polyamide 66 (PA66) powder was prepared in a shear pan mill that was designed and developed in our laboratories. In contrast with discontinuous impacts in the ball mill, the size reduction operation in the pan mill is characterized by application of uninterrupted strong shear forces on particles. It has been found that as compared to the ball mill, much finer pulverization of the polymer material is achieved in the pan mill, in spite of the high strength and ductility of the polymer. Sodium sulfate ionic crystals with hard and pointed edge were co-milled with PA66 to further cut the fine polymer particles into ultrafine powder (2–5?µm). Besides acting as a grinding aid, the ionic crystals also prevented conglutination and aggregation of the polymer powder. Furthermore, PA66 powder could be conveniently separated and purified from the co-milled grinding aid-polymer mixture by simple water washing and filtration. Thus, an energy efficient and environment-friendly technology has been developed to prepare the ultrafine plastic powder at room temperature. This process holds a good promise for commercial applications.  相似文献   

10.
为探讨电气石超细粉及深加工产品的应用,本文中针对分选提纯后的电气石精矿进行超细粉碎试验,通过对超细粉碎条件试验和超细粉粒度分析,确定较佳的电气石超细粉碎工艺条件。结果表明:当研磨时间为60min、矿浆浓度为35%、介质球与给料质量比为3.5∶1时,可以获得电气石超细粉。根据粒度分析结果,最终分别对中位径为5、2、1、0.5μm的电气石超细粉进行了分级提取,可以得到不同应用需要的电气石超细粉。  相似文献   

11.
The objective of the present study was to investigate whether mixing ratio of maize and soybean meal (SBM) affects the breaking behaviour during hammer-milling in terms of the nutrient properties and in vitro digestibility of fractionated particles. Mixtures of maize and SBM with different proportions (% Maize:SBM; 0:100, 25:75, 50:50, 75:25, 100:0) were hammer milled using a 2-mm screen. The obtained powder was sieved into seven fractions with size ranges from 0.149 to 1.190 mm. Results show that energy consumption of grinding mixtures increased from 3.8 to 48.4 kJ/kg with the maize proportion increasing from zero to 100%. Mixing proportion of maize and SBM showed significant effects on nutrient content of fractionated material. For hammer milled material <595 µm, the in vitro digestibility of crude protein (CP) and organic matter (OM) of fractionated material decreased with increasing particle size. Additionally grinding fractionated particles ≥595 µm over a 1-mm sized screen before in vitro digestion analysis increased the digestibility of OM and CP. Equivalent particle size (EPS) and geometric standard deviation (GSD) of hammer milled maize and SBM and their mixtures correlated better than geometric mean diameter (GMD) to OM and CP in vitro digestibility in a linear regression model. In summary, the mixing ratio of maize and SBM had a significant effect on the breaking behaviour of ingredients and in vitro digestibility of CP and OM of the isolated fractions. Mixing ingredients before grinding is suggested in terms of saving energy consumption. The GSD/EPS of ground material should be considered while studying the effects of particle size distribution on the in vitro digestibility of nutrients.  相似文献   

12.
The preparation of high concentration slurry requires careful selection of particle size distribution to achieve the required rheological properties for economic and efficient pipeline transportation. In the present study, the maximum static settled concentration (CW-max) tests pertaining to limiting achievable concentration and rheological measurements were performed for limestone samples in the slurry concentration range of 60–78.5% by mass. The limestone samples with four distinct particle size ranges; i.e., <38, 38–90, 90–210, 210–300?µm were used to prepare five representative experimental samples by blending the fines (<38?µm) with other three coarse size ranges in definite mass proportions. The rheological behavior of the five limestone slurry samples with mono-modal, bimodal and multimodal packing characteristics indicated non-Newtonian flow behavior and fitted well to Bingham Plastic model in the concentration range of 60–78.5% by mass. The slurry samples with bimodal and multimodal packing characteristics indicated substantial reduction in slurry viscosity, yield stress and improved solids loading as compared to mono-modal one. The higher CW-max values obtained for the specific blended (fines with coarse) limestone slurry samples were attributed to the packing effect and was correlated to the ratio of surface to surface separation for the coarse particles (β) to the average fine particle size (d50-f) to achieve higher solids concentration. The reduction in slurry viscosity observed for the specific limestone samples was further substantiated by correlating the distribution modulus (ψ) derived from Farris theory. It may be inferred that these theoretical treatments correlating the experimental data can provide highly reliable guidance to the preparation of high concentration limestone slurry for economic pipeline transportation.  相似文献   

13.
The influence of grinding conditions on the production of fine particles and the width of the particle size distribution produced during ball mill grinding was investigated. The grinding experiments were carried out varying the grinding ball diameter under dry and wet conditions. The relation between the weight passing size observed in an arbitrary cumulative undersize fraction and the grinding time was expressed by modifying Tanaka’s semi-theoretical equation for the grinding limit. The fineness of the product was evaluated by the median particle size in undersize distribution, and the shape of the particle size distributions by three different size ratios calculated using 10%, 20%, 50%, 80% and 90% cumulative weight passing sizes, that showed the width of the particle size distribution. The median particle sizes of product obtained for the grinding limit in wet and dry conditions were around 0.5–0.6 μm and 2 μm, respectively. The width of the particle size distribution in wet grinding decreased with decreasing median particle size of the ground product, and the size distribution in dry grinding became nearly constant. The particle size distribution width was lowered by using smaller grinding balls in wet condition and larger grinding balls in dry condition.  相似文献   

14.
In dry fine grinding processes the relevance of particle-particle interactions rises with increasing product fineness. These particle-particle interactions reduce the grinding efficiency and complicate the process control. The adsorption of grinding aid molecules on the product particle surface is a common measure to handle these effects. To ensure an efficient grinding aid application, the impacts of additives on particle and bulk properties, which influence the micro-processes inside the mill, need to be understood. Within this study the effects of several grinding aids on dry fine grinding of limestone in a laboratory vibration mill were investigated. Unlike in many other scientific works, the impacts of grinding aids were analyzed on different levels simultaneously: Grinding success and agglomerate size distributions were evaluated by wet and dry particle size measurements, respectively. Additionally, material coating on the grinding media, powder flowabilities and particle specific surface energies were measured. It was shown that all of the investigated grinding aids influence the grinding efficiency. However, the formation of agglomerates is not necessarily linked to the product fineness. Furthermore, a strong impact of certain grinding aids on the flowability of the product powder was determined. Thereby, the bulk flow behavior also determines the grinding result as it affects the stress mechanism inside the mill. Moreover, a direct relation between surface energy and powder flowability as well as agglomeration behavior could be demonstrated.  相似文献   

15.
通过实验研究了助磨剂在Al(OH)3 微粉生产中的应用效果 ,优选用于Al(OH)3 微粉种的助磨剂种类的添加量 ,对生产过程中的料球质量比、浆料质量浓度等工艺参数进行优化 ,结果表明 :添加0.4 %Z -1型助磨剂 ,可使现有设备的产能提高1倍以上。  相似文献   

16.
Calcium carbonate (CaCO3) powders commonly used as a functional filler in paints, inks, papers, plastics, cosmetics, and so on, are generally produced by mechanical treatment (milling). This research was aimed to produce calcium carbonate submicron particles by stirred milling in wet conditions. The experiments were carried out by a batch operation, and determined the change in particle size distribution (PSD) of calcium carbonate. The product size (fineness) and PSD were used in the evaluation of the test results. The results showed that wet grinding in a stirred bead mill using the smaller grinding media (500 µm) is an effective method for reduction of product size (~500 nm) of the CaCO3 powder.  相似文献   

17.
In the present experiment study, dressing infeed values of 5, 10, 15, 20, and 25?µm are conceived on alumina wheel using 0.75 carat identical diamond dressers. The surface topologies of the dressed wheels are observed under scanning electron microscope. Differently dressed wheels are subsequently, employed for up-grinding Ti-6Al-4V in dry environment for 20 passes while the grinding infeed is kept constant at 10?µm during each pass. The grinding ratio is evaluated and the typical surface roughness parameters are measured using a mechanical type stylus. Tangential and normal force components are accurately measured with the help of dynamometer while the quality of ground substrate is observed under high resolution microscope. The performances of the differently dressed wheels are evaluated and subsequently, the dressing parameters are optimized based on the results obtained herein.  相似文献   

18.
《Advanced Powder Technology》2020,31(11):4517-4525
In this study, considering different operational parameters for stirred media mill, change in specific energy was compared to the change in Rx values, i.e. the cumulative weight of the material undersized to a specific sieve. R values, namely R38, R75, R106, were measured before and after grinding in stirred mill. The change in Rx (ΔRx, %) values were calculated and they were used to evaluate the certain unit of effectual energy (Ecb). This abovementioned calculation is performed by proportioning the Specific Energy (SE) to ΔRx values. The effectual part of SE is considered to be the ratio of the energy needed only for size reduction in grinding and it should be related to the ΔRx. The relative Ecb ratios of different grinding conditions give the relative specific energy efficiency ratio (SEe). The relative specific energy efficiency ratio is inversely proportional to specific grinding parameters and ground product particle sizes. The relative specific energy efficiency can be considered as the relative amount of energy for various grinding conditions. The variation between relative energy amount and the previously specified particle size provides a realistic comparison of different grinding parameters. The abovementioned variation could be employed to understand the resistance particle size which is a new concept to describe the particle size at which the maximum effectual SE is directly used. In the context of this study, it was aimed to figure out the interrelation between specific energy efficiency and PSD variation along with the resistance particle size.  相似文献   

19.
This paper investigates the grindability of calcite powder (D50 = 6.68 µm) to submicron particle sizes using stirred media mill (0.75 l) and ultrasonic generator (400 W, 24 kHz). The present study focuses directly on the comminution of calcite powder in water media by combined stirred milling and ultrasonic treatment and effects of some operational parameters such as grinding time (10–30 min), ultrasonic power (40–100% µm as amplitude settings), and solid ratio (10–30% w/w) on comminution. Experimental results have been evaluated on the basis of product size and width of particle size distribution.  相似文献   

20.
唐晓博  孙振平  刘毅 《材料导报》2018,32(4):641-645
测试了以三乙醇胺(Triethanolamine,TEA)为助磨剂所磨制的水泥(TEA-C)的基本物理性质,探究了TEA-C与聚羧酸系减水剂(Polycarboxylate superplasticizer,PCE)体系浆体流动性及经时流动性的变化规律,并通过吸附量测定、水化热分析、TEA溶出量测试分析以及水泥颗粒表面性质分析等方法揭示了TEA的助磨机理及其对水泥与PCE适应性的影响机理。结果表明,TEA作为助磨剂使用时,当其掺量为0%~0.02%时,所磨制的水泥与PCE适应性良好,其原因为少量的TEA改善了水泥颗粒的粒径分布;当其掺量为0.02%~0.04%时,TEA-C与PCE出现适应性不良的现象,其原因为PCE吸附量降低,水泥水化速率加快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号