首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The paper introduces a new computationally efficient algorithm to determine a lower bound on the real structured singular value μ. The algorithm is based on a pole migration approach where an optimization solver is used to compute a lower bound on real μ independent of a frequency sweep. A distinguishing feature of this algorithm from other frequency independent one‐shot tests is that multiple localized optima (if they exist) are identified and returned from the search. This is achieved by using a number of alternative methods to generate different initial conditions from which the optimization solver can initiate its search from. The pole migration algorithm presented has also been extended to determine lower bounds for complex parametric uncertainties as well as full complex blocks. However, the results presented are for strictly real and repeated parametric uncertainty problems as this class of problem is the focus of this paper and are in general the most difficult to solve. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper focuses on the H model reduction problem of positive fractional order systems. For a stable positive fractional order system, we aim to construct a positive reduced‐order fractional system such that the associated error system is stable with a prescribed H performance. Then, based on the bounded real lemma for fractional order systems, a sufficient condition is given to characterize the model reduction problem with a prescribed H‐norm error bound in terms of a linear matrix inequality (LMI). Furthermore, by introducing a new flexible real matrix variable, the desired reduced‐order system matrices are decoupled with the complex matrix variable and further parameterized by the new matrix variable. A corresponding iterative LMI algorithm is also proposed. Finally, several illustrative examples are given to show the effectiveness of the proposed algorithms.  相似文献   

3.
This paper shows that the set of rational, strictly proper, robustly stabilizing controllers for single‐input single‐output linear‐time invariant plants will form a bounded (can even be empty) set in the controller parameter space if and only if the order of the stabilizing controller cannot be reduced any further; if the set of proper stabilizing controllers of order r is not empty and the set of strictly proper controllers of order r is bounded, then r is the minimal order of stabilization. The paper also extends this result to characterize the set of controllers that guarantee some pre‐specified performance specifications. In particular, it is shown here that the minimal order of a controller that guarantees specified performance is l iff (1) there is a controller of order l guaranteeing the specified performance and (2) the set of strictly proper, robustly stabilizing controllers of order l and guaranteeing the performance is bounded. Moreover, if the order of the controller is increased, the set of higher‐order controllers which satisfies the specified performance will necessarily be unbounded. This characterization is provided for performance specifications, such as gain margin and robust stability, which require a one‐parameter family of real polynomials to be Hurwitz, where the parameter is in a closed interval. Other performance specifications, such as phase margin and ℋ︁ norm, can be reduced to the problem of determining a set of stabilizing controllers that renders a family of complex polynomials Hurwitz. The characterization of the set of controllers for the stabilization of complex polynomials is provided and is used to show the boundedness properties for the set of controllers that guarantee a given phase margin or an upper bound on the ℋ︁ norm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents new results pertaining to the control design of a class of linear uncertain systems with Markovian jump parameters. An integral part of the system dynamics is a delayed state in which the time‐delays are mode dependent. The jumping parameters are modelled as a continuous‐time, discrete‐state Markov process and the uncertainties are norm‐bounded. We construct an appropriate Lyapunov–Krasovskii functional and design a simultaneous ℋ︁2/ℋ︁ controller which minimizes a quadratic ℋ︁2 performance measure while satisfying a prescribed ℋ︁‐norm bound on the closed‐loop system. It is established that sufficient conditions for the existence of the simultaneous ℋ︁2/ℋ︁ controller and the associated performance upper bound are cast in the form of linear matrix inequalities. Simulation results are provided and extension to the case where the jumping rates are subject to uncertainties is presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper proposes a robust H‐based adaptive backstepping control scheme for the output stabilization of a special class of cascaded nonlinear systems. This kind of systems possess the feature that the first sub‐equation is a linear perturbed system, whereas the rest ones perform a general semi‐strict feedback form. Different from the conventional backstepping design approach, the special cascaded structure ensures to introduce the H technique to the backstepping procedure such that both the robust performance and the robust stability can be simultaneously guaranteed. Within the Lyapunov framework, the proposed control scheme is proved to guarantee (i) the uniformly ultimate boundedness of the system signals with a bound that can be made arbitrarily small by suitably choosing control parameters; (ii) asymptotic output stabilization as long as the uncertain nonlinearities and external disturbances vanish; and (iii) ‐performance of the closed‐loop system. A space interception scenario is utilized to demonstrate the effectiveness of the proposed control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the problem of ?? filtering for a class of uncertain Markovian jump linear systems. The uncertainty is assumed to be norm‐bounded and appears in all the matrices of the system state‐space model, including the coefficient matrices of the noise signals. It is also assumed that the jumping parameter is available. We develop a methodology for designing a Markovian jump linear filter that ensures a prescribed bound on the ??2‐induced gain from the noise signals to the estimation error, irrespective of the uncertainty. The proposed design is given in terms of linear matrix inequalities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with network‐based H stabilization for stochastic systems, where network‐induced delays, packet dropouts, and packet disorders are taken into account simultaneously. The packet disorders arising from both the sampler‐to‐controller channel and the controller‐to‐actuator channel are considered by introducing a logic controller and a logic zero‐order hold. The network‐induced delays and packet dropouts are modeled as a constant delay plus a non‐differentiable time‐varying delay in the input. By employing Lyapunov–Krasovskii functional approach, we establish results that parallel well‐known bounded real Lemmas. More specifically, these results provide conditions to bound the H level of the system, which means the worst case energy of the output of the system when subjected to a unitary norm deterministic disturbance signal. On the basis of these results, suitable network‐based H controllers are designed by using cone complementary linearization method. An air vehicle system is finally taken as an example to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the robust H filter design for a class of uncertain singular time‐delayed Markovian jump systems, whose transition rate matrix has elementwise bounded uncertainties. By the LMI approach, a novel bounded real lemma is proposed such that the singular Markovian jump system is robustly exponentially mean‐square admissible with a prescribed H performance index. Based on this, a sufficient condition for the existence of a robust H filter is developed in terms of LMIs. Finally, a numerical example is provided to show the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We present a non‐trivial case study designed to highlight some of the practical issues that arise when using mixed‐µ or complex‐µ robust synthesis methodologies. By considering a multi‐input multi‐output three‐cart mass–spring–dashpot (MSD) with uncertain parameters and dynamics, it is demonstrated that optimized performance (disturbance‐rejection) is reduced as the level of uncertainty in one or two real parameters is increased. Comparisons are made (a) in the frequency domain, (b) by RMS values of key signals and (c) in time‐domain simulations. The mixed‐µ controllers designed are shown to yield superior performance as compared with the classical complex‐µ design. The singular value decomposition analysis shows the directionality changes resulting from different uncertainty levels and from the use of different frequency weights. The nominal and marginal stability regions of the closed‐loop system are studied and discussed, illustrating how stability margins can be extended at the cost of reducing performance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with the design of robust non‐minimal order H filters for uncertain discrete‐time linear systems. The uncertainty is assumed to be time‐invariant and to belong to a polytope. The novelty is that a convex filtering design procedure with Linear Matrix Inequality constraints is proposed to synthesize guaranteed‐cost filters with order greater than the order of the system. An H‐norm bound for the transfer‐function from the system input to the filtering error is adopted as performance criterion. The non‐minimal order filters proposed generalize other existing filters with augmented structures from the literature and can provide better performance. An extension to the problem of robust smoothing is proposed as well. The procedure is illustrated by a numerical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers linear time invariant systems with sector type nonlinearities and proposes regional ??2 performance analysis and synthesis methods based on the circle criterion. In particular, we consider the effect of non‐zero initial states and/or an ??2 disturbance inputs on the ??2 norm of a selected performance output. We show that both analysis and synthesis problems can be recast as linear matrix inequality (LMI) optimization problems, where, for synthesis, the outputs of the nonlinear elements are assumed available for control. Moreover, it is shown when the circle criterion does or does not help to improve the performance bound in robust control synthesis when compared with the existing linear analysis method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the problems of stochastic stability and stabilization for a class of uncertain time‐delay systems with Markovian jump parameters are investigated. The jumping parameters are modelled as a continuous‐time, discrete‐state Markov process. The parametric uncertainties are assumed to be real, time‐varying and norm‐bounded that appear in the state, input and delayed‐state matrices. The time‐delay factor is constant and unknown with a known bound. Complete results for both delay‐independent and delay‐dependent stochastic stability criteria for the nominal and uncertain time‐delay jumping systems are developed. The control objective is to design a state feedback controller such that stochastic stability and a prescribed ?‐performance are guaranteed. We establish that the control problem for the time‐delay Markovian jump systems with and without uncertain parameters can be essentially solved in terms of the solutions of a finite set of coupled algebraic Riccati inequalities or linear matrix inequalities. Extension of the developed results to the case of uncertain jumping rates is also provided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a convex approach to regional stability and ℒ︁2‐gain analysis and control synthesis for a class of nonlinear systems subject to bounded disturbance signals, where the system matrices are allowed to be rational functions of the state and uncertain parameters. To derive sufficient conditions for analysing input‐to‐output properties, we consider polynomial Lyapunov functions of the state and uncertain parameters (assumed to be bounded) and a differential‐algebraic representation of the nonlinear system. The analysis conditions are written in terms of linear matrix inequalities determining a bound on the ℒ︁2‐gain of the input‐to‐output operator for a class of (bounded) admissible disturbance signals. Through a suitable parametrization involving the Lyapunov and control matrices, we also propose a linear (full‐order) output feedback controller with a guaranteed bound on the ℒ︁2‐gain. Numerical examples are used to illustrate the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the H input/output (I/O) linearization formulation is applied to design an inner‐loop nonlinear controller for a nonlinear ship course‐keeping control problem. Due to the ship motion dynamics are non‐minimum phase, it is impossible to use the ordinary feedback I/O linearization to resolve. Hence, the technique of H I/O linearization is proposed to obtain a nonlinear H controller such that the compensated nonlinear system approximates the linear reference model in I/O behaviour. Then a μ‐synthesis method is employed to design an outer‐loop robust controller to address tracking, regulation, and robustness issues. The time responses of the tracking signals for the closed‐loop system reveal that the overall robust nonlinear controller is able to provide robust stability and robust performance for the plant uncertainties and state measurement errors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is concerned with the problem of robust H control for uncertain stochastic systems with Markovian jump parameters and time‐varying state delays. A linear matrix inequality approach is developed and state feedback controllers are designed, which guarantee mean square asymptotic stability of the closed‐loop system and a prescribed H performance level for all modes and admissible uncertainties. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

16.
A new robust adaptive control method is proposed, which removes the deficiencies of the classic robust multiple model adaptive control (RMMAC) using benefits of the ν‐gap metric. First, the classic RMMAC design procedure cannot be used for systematic design for unstable plants because it uses the Baram Proximity Measure, which cannot be calculated for open‐loop unstable plants. Next, the %FNARC method which is used as a systematic approach for subdividing the uncertainty set makes the RMMAC structure being always companion with the µ‐synthesis design method. Then in case of two or more uncertain parameters, the model set definition in the classic RMMAC is based on cumbersome ad hoc methods. Several methods based on ν‐gap metric for working out the mentioned problems are presented in this paper. To demonstrate the benefits of the proposed RMMAC method, two benchmark problems subject to unmodeled dynamics, stochastic disturbance input and sensor noise are considered as case studies. The first case‐study is a non‐minimum‐phase (NMP) system, which has an uncertain NMP zero; the second case‐study is a mass‐spring‐dashpot system that has three uncertain real parameters. In the first case‐study, five robust controller design methods (H2, H, QFT, H loop‐shaping and µ‐synthesis) are implemented and it is shown via extensive simulations that RMMAC/ν/QFT method improves disturbance‐rejection, when compared with the classic RMMAC. In the second case‐study, two robust controller design methods (QFT and mixed µ‐synthesis) are applied and it is shown that the RMMAC/ν/QFT method improves disturbance‐rejection, when compared with RMMAC/ν/mixed?µ. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The structured singular value (s.s.v)μ enables the study of robust stability and performance of a controller in the presence of real parametric uncertainties and complex uncertainties corresponding to neglected dynamics. In spite of the NP-hard characteristic of the problem, it is now possible to compute an interval for the s.s.v. μ using polynomial-time algorithms. The skewed s.s.v. ν was introduced by Fan and Tits in the context of robust performance analysis. The primary aim of this paper is to propose a new mixed ν upper bound, which is applicable to problems with a special, but practically important, structure. We then illustrate through a realistic missile example that certain problems naturally require the ν tool rather than the μ tool. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Parallel simulation codes often suffer from performance bottlenecks due to network congestion, leaving millions of dollars of investments underutilized. Given a network topology, it is critical to understand how different applications, job placements, routing schemes, etc., are affected by and contribute to network congestion, especially for large and complex networks. Understanding and optimizing communication on large‐scale networks is an active area of research. Domain experts often use exploratory tools to develop both intuitive and formal metrics for network health and performance. This paper presents Tree Scope , an interactive, web‐based visualization tool for exploring network traffic on large‐scale fat‐tree networks. Tree Scope encodes the network topology using a tailored matrix‐based representation and provides detailed visualization of all traffic in the network. We report on the design process of Tree Scope , which has been received positively by network researchers as well as system administrators. Through case studies of real and simulated data, we demonstrate how Tree Scope 's visual design and interactive support for complex queries on network traffic can provide experts with new insights into the occurrences and causes of congestion in the network.  相似文献   

19.
This paper addresses global robust H control for a class of switched nonlinear systems with uncertainty under arbitrary switchings. Each subsystem is in lower triangular form. The uncertainties are assumed to be in a known compact set. The backstepping design technique is used to design a smooth state feedback controller that renders the associated closed‐loop switched system globally robustly asymptotically stable and imposes a pre‐specified upper bound to the L 2‐gain under arbitrary switchings. An example is provided to demonstrate the efficacy of the design approach.  相似文献   

20.
In this paper, the distributed H robust control problem synthesized with transient performance is investigated for a group of autonomous agents governed by uncertain general linear node dynamics. Based on the relative information between neighboring agents and some information of other agents, distributed state‐feedback and observer‐type output‐feedback control protocols are designed and analyzed, respectively. By using tools from robust control theory, conditions for the existence of controllers for solving such a problem are established. It is shown that the problem of distributed H robust control synthesized with transient performance can be converted to the H control problem synthesized with transient performance for decoupled linear systems of the same low dimensions. Finally, simulation examples are provided to illustrate the effectiveness of the design. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号