首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
氨氮是污染水体的重要污染物,水体中氨氮含量超标,不仅使水环境质量恶化,造成水体富营养化,破坏生态环境,还严重危害人类健康和动植物的生存。高浓度(〉0.5g/L)无机氨氮废水,主要是由化肥广各工序产生的,废水中含铵盐质量浓度达0.05%~3%,这种高浓度无机氨氮废水,呈酸性,腐蚀性强,常用的处理方法处理很困难,如生物氧化法,只能处理不超过0.5g/L铵盐废水。  相似文献   

2.
王楠  李思凡  商丽艳 《当代化工》2014,(9):1886-1888
氨氮是废水中常见的污染物,排入水中会造成水体富营养化,所以去除氨氮尤为重要。介绍了化学沉淀法、化学氧化法、离子交换法、吹脱法和化学吸附法处理高浓度氨氮废水的研究进展,评价了各种方法的应用特点,并对今后需要开展的工作提出建议,以期为相关研究提供参考。  相似文献   

3.
高浓度氨氮废水直接排放会造成水体富营养化,对水环境和人体健康产生危害。文中分析了微波辐射处理高浓度氨氮废水的机理,总结了单独微波、微波+曝气、微波+敏化剂、微波+改性敏化剂、微波+敏化剂+强氧化剂5种方式处理高浓度氨氮废水的影响因素和效果。分析认为,微波辐射处理高浓度氨氮废水在处理效果、经济成本、安全性和可操控性方面具有技术应用可行性。  相似文献   

4.
煤化工的生产过程中,会产生大量的废水,其中包括氨氮、CODCr、酚类等污染物,必须经过充分的处理才能够达到排放标准。对新型煤化工废水的处理技术进行了研究,首先分析产生废水的特点,然后总结了不同技术的研究和应用情况。  相似文献   

5.
工业生产过程中极易产生大量高氨氮废水,如果不经处理直接排放到自然水体中很容易导致水体中的藻类及微生物大量繁殖,即水体的富营养化,对生态环境带来巨大的破坏。为了有效控制高氨氮废水污染,论述了化学沉淀法、氧化法、离子交换法、吹脱法、化学吸附法等物化法治理高氨氮废水的应用。  相似文献   

6.
针对电镀废水处理难度大、氨氮浓度高等问题,为了验证次氯酸钠对电镀废水中氨氮的处理效果,采用次氯酸钠氧化法对氨氮浓度为100 mg/L的模拟电镀废水进行预处理,研究了次氯酸钠投加量、反应时间、初始p H值、反应温度等因素对氨氮去除效果的影响。结果表明:常温条件下,当m(Cl2)∶m(N)=5∶1,反应时间为5 min,初始pH值在6~7之间,次氯酸钠对模拟电镀废水中氨氮的处理效果好,氨氮去除率高达85.5%,剩余氨氮浓度符合GB 21900-2008《电镀污染物排放标准》表2中的氨氮排放标准,说明了采用次氯酸钠氧化法去除电镀废水中的氨氮是可行的,同时也证明了十二烷基苯磺酸钠的存在会影响次氯酸钠的稳定性。  相似文献   

7.
氨氮过度排放加剧水体富营养化,严重破坏水生态环境,对鱼类及其他水生生物产生毒害作用,甚至对人体健康有潜在威胁,去除废水中氨氮十分必要.采用氨氮去除剂对江西某厂含氨氮废水进行化学氧化处理,并与次氯酸钠在处理效果和成本上进行对比.结果表明,氨氮去除剂的处理效果好于次氯酸钠,处理成本约为次氯酸钠的50%,且具有氧化能力强、反...  相似文献   

8.
生物净化剂   总被引:2,自引:0,他引:2  
利用生物净化剂净化那些经常处于静态的有毒有害污水、废水,对保护环境、维护生态平衡和保障人民身体健康具有重要意义。活菌生物净化剂是用化能异养细菌制成的,能有效消除水体中的有机污染物,降解水体中的氨氮和亚硝基氮。强化微生物治污可使含有大量难降解化学物质废水的化学需氧量和氨氮含量大幅度降低。商品名为科利尔的活菌生物净水剂能有效消除水体中的有机物、腐殖质,已在我国沿海养殖场和公园水体中试用。欧洲治理污水采用酶可邦复合酶制剂,可快速降解污水中各种有机物。  相似文献   

9.
氨氮废水处理技术的研究现状及展望   总被引:1,自引:0,他引:1  
氨氮废水污染范围广,是造成水体富营养化现象的主要原因。介绍了处理氨氮废水常用的物理化学法和生物脱氮技术,分析了各种氨氮废水处理方法的优势和存在的问题。针对不同浓度的氨氮污染源,采用多种技术联用可以得到更好的处理效果。同时对新型吸附剂金属有机骨架材料(MOFs)采用吸附法处理氨氮废水及氨回收方面的应用进行了展望。  相似文献   

10.
李宏  沈虹 《当代化工》2012,41(5):501-504
氮在水中主要是以有机氮和氨氮的形式存在的,污染受纳水体,影响水环境质量.高浓度氨氮废水可采用吹脱、汽提法去除.中、低浓度氨氮废水可采用MAP法沉氨预处理,除去大部分氨氮后,再经生物处理去除剩余的氨氮.MAP法去除中、低浓度的氨氮处理效果良好,并无二次污染.  相似文献   

11.
兰剑平 《当代化工》2014,(10):2014-2015,2018
按照先回收再沺理的思路,采用两级回收工艺从合成乐果废水中回收甲醇和一甲胺,大幅度降低合成乐果废水中的COD、氨氮等污染物浓度,有利于废水后续生化处理,提高其可生化性。本工艺对废水中甲醇的回收率达到85%,对一甲胺的回收率达到90%,回收的副产物甲醇和一甲胺又用作乐果生产的原料,实现清洁生产的目的。  相似文献   

12.
煤化工废水是一种典型的有毒、难降解性工业废水。经预处理后的废水中仍含有大量的有毒有害物质,其中氨氮、酚类物质是典型的代表,氨氮含量在200mg/L左右,酚类物质含量占COD值的40%以上,浓度高达1000mg/L。如果对这些高毒性的物质不加处理或处理深度不够,则对环境和生命都会造成极大的危害。因此,酚类物质、氨氮的有效处理是实现煤化工废水无害化处理以及绿色可持续发展的关键。本综述主要从酚类物质处理技术与工艺、氨氮处理技术与工艺两个方面梳理了国内外煤化工废水中酚类物质、氨氮的处理现状,也全面分析了各种技术与工艺的优缺点。使该领域的研究人员以更加科学的方法了解煤化工废水中酚类物质、氨氮处理技术与工艺的研究现状和发展趋势。最后,探讨了未来煤化工废水中酚类物质、氨氮处理的发展前景。  相似文献   

13.
固化菌藻系统处理养殖废水中氨氮的研究   总被引:1,自引:0,他引:1  
采用海藻酸钠-氯化钙固定法固化硝化细菌和硝化细菌与小球藻的混合物,来处理养殖废水中的氨氮污染,考察了处理时间、温度、p H和氨氮/固化小球用量比对氨氮去除效果的影响。实验结果显示,固化硝化细菌小球和固化菌藻小球均能有效去除废水中的氨氮,但固化菌藻小球的去除效果更佳。在28℃、p H=8、氨氮起始质量浓度为50 mg/L、氨氮/固化菌藻小球用量比为1∶40的实验条件下,24 h内能去除废水中96.51%的氨氮。实验结果证实,硝化细菌和小球藻具有一定的共生关系,在去除氨氮时有协同效应,固化菌藻小球在养殖废水脱氮中具有一定的应用前景。  相似文献   

14.
煤化工废水水量大,水质复杂,化学需氧量(COD)最高可达30000mg/L,是一种典型的处理难度高的工业废水。油类物质、酚类物质以及氨氮是煤化工废水中污染物质的主要组成成分,其最高浓度分别可达10000mg/L、9000mg/L、4000mg/L。如果不回收,则造成资源的严重浪费。因此,油类物质、酚类物质以及氨氮的有效回收是实现煤化工废水无害化处理不容忽视的问题。本文主要从油类物质、酚类物质、氨氮的回收技术与工艺3个方面梳理了国内外煤化工废水中油类物质、酚类物质以及氨氮的回收现状,并对各类技术的优缺点进行了对比和分析,其目的是让该领域的研究人员以更加科学的方法了解煤化工废水中油类物质、酚类物质以及氨氮的研究现状与发展趋势。最后基于节能、高效、持续健康的发展理念,探讨了未来煤化工废水中油类物质、酚类物质以及氨氮回收的前景。  相似文献   

15.
含锌高浓度氨氮废水治理研究   总被引:4,自引:0,他引:4  
分析了高浓度氨氮废水的成份 ,将其含硫废水进行一定的调配调解后 ,使其中重金属污染物 Zn2 沉淀过滤出来 ,Zn2 的去除率达 99.99% ;其过滤液作为汽提原料 ,汽提可除去大部分硫化物与氨氮  相似文献   

16.
宋平 《广东化工》2012,39(7):125-125,136
针对目前制革、屠宰、养殖等行业高氨氮浓度废水处理难的问题,采用现代生物工程技术研发出的以光合细菌和枯草芽孢杆菌为主要成分的复合型微生物制剂。该制剂适用于好氧及厌氧污水处理系统,在不改变原有废水处理工艺的基础上,投加少量即可快速地降低出水氨氮浓度,为高氨氮浓度废水处理提供了一个解决氨氮问题的费用更低的方案。  相似文献   

17.
通过实验测定了聚甲醛废水中物质组成,加入废水中主要物质到氨氮标准样品中用纳氏试剂法测定加入干扰物前后氨氮含量变化,指出解决聚甲醛废水中氨氮测定干扰的方法。  相似文献   

18.
折点氯化法具有反应速度快、氨氮脱除率高等优点,广泛应用于氯碱等行业中,但反应过程中产生二氯胺致使废水中余氯浓度过高,无法满足离子膜法烧碱生产安全技术规定(HAB004—2002)。为解决这一问题,本文提出了超重力技术强化折点氯化法处理氨氮废水的新工艺,利用超重力技术强化传质的特点,实现次氯酸钠和氨氮的快速反应以及二氯胺的有效去除,研究了超重力因子(β)、氯氮比(Cl/N)、pH和液体流量QL等操作参数对氨氮脱除率和余氯的影响规律。研究结果表明,当Cl/N=11、β=30、pH=6~8和液体流量QL=80L/h时,氨氮去除率>95%,余氯浓度<1.5mg/L。与传统反应器相比,二氯胺去除效果明显,处理后的水中氨氮满足烧碱安全生产技术规定,此方法对于氯碱行业中低浓度氨氮的去除具有广阔的应用前景。  相似文献   

19.
将高效节能微波脱氨技术应用到煤气化污水的脱氨过程,实验研究了微波条件下pH值、反应温度和处理时间等因素对氨氮去除效果的影响。结果表明,对氨氮初始浓度为7 112.7 mg/L的污水,pH值为11以上,温度为80℃,微波处理20 min氨氮去除率达到90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号