首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
选用扇形砂岩地层模块作为大尺寸地层模型,以钻井液侵入多功能物理模拟系统为平台,实施了长时间油基钻井液侵入实验,总结了侵入过程中地层模块径向电阻率、油基钻井液滤液滤失流量和侵入深度的变化规律,获得了不同物性条件下的油基钻井液侵入特征;实现了地层条件下的砂岩储层油基钻井液侵入数值模拟。研究结果表明:油基钻井液侵入过程中,地层模块径向电阻率向远离井壁方向依次开始增大,且增大速度随径向深度增大而降低。侵入初期,滤液滤失流量迅速减小,累计滤失量增幅变缓,侵入深度较浅;侵入达到动态平衡后,滤液滤失流量趋于稳定,累计滤失量随侵入时间线性增加,侵入深度增大速度极慢。与高孔渗砂岩储层相比,低孔渗砂岩储层中的滤液滤失流量和累计滤失量更大,侵入更快、更深,径向电阻率率先增大且增大速度更快。  相似文献   

2.
基于大尺寸地层模型的砂岩储层油基钻井液侵入模拟   总被引:1,自引:1,他引:0  
选用扇形砂岩地层模块作为大尺寸地层模型,以钻井液侵入多功能物理模拟系统为平台,实施了长时间油基钻井液侵入实验,总结了侵入过程中地层模块径向电阻率、油基钻井液滤液滤失流量和侵入深度的变化规律,获得了不同物性条件下的油基钻井液侵入特征;实现了地层条件下的砂岩储层油基钻井液侵入数值模拟。研究结果表明:油基钻井液侵入过程中,地层模块径向电阻率向远离井壁方向依次开始增大,且增大速度随径向深度增大而降低。侵入初期,滤液滤失流量迅速减小,累计滤失量增幅变缓,侵入深度较浅;侵入达到动态平衡后,滤液滤失流量趋于稳定,累计滤失量随侵入时间线性增加,侵入深度增大速度极慢。与高孔渗砂岩储层相比,低孔渗砂岩储层中的滤液滤失流量和累计滤失量更大,侵入更快、更深,径向电阻率率先增大且增大速度更快。  相似文献   

3.
基于油基泥浆环境下的时移电阻率测量数据,采用增阻模型及联合反演原理,并考虑测井时间对电阻剖面的影响,开展了油基泥浆环境下的储层电阻率动态剖面方法研究及应用,结合实测井资料,利用随钻电磁波电阻率实时测量数据和上提复测测量数据进行联合反演,得到主、复测泥浆侵入深度、侵入带电阻率以及地层真电阻率值等储层电阻率动态剖面,在此基础上结合宁波油田四口实测井的物性参数,统计分析了储层孔隙度、渗透率、饱和度以及孔渗比与钻井液侵入深度的关系,说明油基泥浆对储层具有一定的保护作用。  相似文献   

4.
南海西部油田滚动勘探部署大斜度井兼探多个目的层位,并利用高密度油基钻井液保障井壁稳定性,采用常规电缆地层测试作业风险高、难度大,而且常规的声波、密度、电阻率探头难以准确区别地层油与油基钻井液滤液,难以保障取到合格资料,因此需要应用随钻测井取样技术。FASTrak Prism随钻测压取样工具可随钻具组合入井,克服了电缆测井作业遇阻遇卡问题,随钻光谱技术可通过多通道光密度测量判断流体含气量(甲烷)实现地层原油准确识别。通过FASTrak Prism随钻测压取样技术在南海西部油田储量评价中的应用案例,展示了借助随钻光谱探头快速区分油基钻井液滤液和地层油的方法,可以为勘探开发一体化储量评价提供地层压力、储层物性和流体性质等关键资料,验证了该项技术在南海西部油田勘探开发一体化中实施的可行性。  相似文献   

5.
泥浆侵入特性的测井应用   总被引:14,自引:2,他引:12  
林纯增  张舫 《测井技术》2002,26(4):341-346
由于泥浆滤液与地层水矿化度的差别,不同探测深度的电阻率测井能很好地反映泥浆侵入的影响。泥浆侵入特性的测井应用包括用冲洗带电阻率识别油气层、水层而不受地层水的影响;用简单的三电阻率反演方法即可得到地层真电阻率,它与LWD测井的Rt一致;用简单的三电阻率反演方法可得到泥浆滤液侵入深度,它可反映储集层的流体性质特征;用侵入带电阻率模拟法可得到测井条件下储层侵入带饱和度变化、泥浆滤液冲洗油气层程度及其储集层驱替特性。  相似文献   

6.
低孔低渗储层流体性质识别一直是东海盆地西湖凹陷近年勘探中的一大难题。分析认为,此类储层渗透率低,钻进过程中孔隙内的气体不易被钻井液滤液驱替,地下破碎岩石中的气量与Flair录井仪实测气测全量值有很好的一致性。基于此,本文提出通过测井总孔隙度、含气饱和度,结合地层压力和钻井参数进行气测录井全量正演计算,并与实测气测全量值进行对比,从而实现快速准确判别低孔低渗储层流体性质和直接评价低孔低渗储层含气性的目标。东海盆地西湖凹陷应用表明,本文提出的气测录井全量正演计算方法合理可行且具有通用性,可进一步推广应用。  相似文献   

7.
吴伟  魏杰瑞 《石化技术》2023,(1):112-114
低孔低渗气藏普遍存在物性差、束缚水饱和度高、气层与水层测井响应差异不明显的现象;海上钻井常用水基钻井液体系,导致钻井液更容易侵入到地层中,电阻率测量值低于地层真电阻率,加剧了流体识别的困难程度,以上这些问题都给测井储层评价带来极大的挑战。阐述了通过电阻率反演,获得原状地层电阻率、侵入带电阻率和侵入深度,并利用反演获得的原状地层电阻率进行地层评价,为准确判断油气层提供依据。  相似文献   

8.
钻井液侵入地层使得井周介质电阻率分布发生变化,从而影响了随钻电磁波电阻率测井的响应。文中基于渗流理论、对流扩散理论及电磁场理论,利用有限元数值模拟技术,定量分析了侵入时间、储层孔隙度等变化对钻井液侵入下随钻电磁波电阻率测井响应的影响。结果表明:钻井液侵入10 min后,随钻电磁波电阻率测井的响应明显受到钻井液侵入的影响;储层孔隙度大于15%时,相位差响应增长超过5%;储层含水饱和度小于60%时,相位差响应增长超过4%;钻井液与地层水的矿化度比值大于0.244时,相位差响应增长超过10%;储层渗透率和压差变化在钻井液侵入情况下对随钻电磁波电阻率测井相位差响应的影响基本固定。研究结果为随钻电磁波电阻率测井解释消除钻井液侵入的影响提供了一定理论基础,对探测深度的综合判断有助于相关仪器的研发和改进。  相似文献   

9.
通过对钻井液侵入油层的理论研究和数值模拟分析,可定量计算钻井液侵入后油层含水饱和度、地层水矿化度(电阻率)的径向分布以及地层电阻率的径向变化。应用相对渗透率的概念,对淡水钻井液滤液侵入油层形成低电阻率环带的过程进行了解释。分析了储集层的孔隙度、含水饱和度和钻井液矿化度等因素变化对地层径向电阻率分布和低电阻率环带的影响。在一维含油岩心钻井液滤液驱替实验和实际测井资料中,均测量到了低电阻率环带的存在。低电阻率环带的存在对高频感应电阻率测井影响较大,而低频侧向电阻率测井几乎不受影响。可以用阵列感应或阵列电磁波测井测量出的低电阻率环带来识别低电阻率油层。图7参11  相似文献   

10.
东海盆地低渗油气资源丰富,但低渗储层又极其敏感,做好东海低渗储层保护是实现低渗油气资源良好开发的先决条件,为此东海盆地先后使用了两种钻井液体系,分别是反渗透水基泥浆和白油油基泥浆。为了明确两种泥浆体系对低渗储层的侵入特征,开展了(0.1~1)×10?3 μm2、(1~5)×10?3 μm2、(5~10)×10?3 μm2三种类型低渗岩心侵入实验,实验结果表明,水基泥浆和油基泥浆均对岩心存在侵入现象,随着泥浆对岩心的侵入,引起不同程度电阻率的“低侵”和“高侵”特征,利用不同泥浆的侵入特性结合时移电阻率测井可以有效分析泥浆的侵入深度、流体性质以及可动水情况,为低渗储层井筒保护、油气层选段射孔提供有效的技术支持。  相似文献   

11.
油基钻井液会阻断直流电流通路从而使常规的随钻电阻率测井方法失效,为解决该问题,基于电容耦合非接触电导检测技术,提出了可用于油基钻井液的随钻电阻率成像测井方法。综述了随钻电阻率测量的主要方法,介绍了电容耦合非接触电导检测技术的原理与特点。将电容耦合和电感耦合相结合,建立了油基钻井液条件下的方位测井模拟模型,并利用该模型进行了多种工况下的测井模拟试验,分析了周向位置与电流幅值、电极周向位置与电流相位的关系及钮扣电极成像原理,模拟结果表明,钮扣电极具有方位探测能力,所提出的测井方法具有可行性。设计了地面模拟测井系统,进行了方位测井室内试验,发现该测井系统能够实现地层成像和测量地层倾角,试验结果与实际地层倾角的相对误差仅为4.7%。研究认为,提出的随钻电阻率成像测井方法可以在油基钻井液条件下进行随钻侧向电阻率测量,并且使测得的电阻率成像,从而得到较为可靠的测井结果。   相似文献   

12.
四川盆地碳酸盐岩储层发育层系多、埋藏深,储层物性普遍表现出低孔隙度、低渗透率的特征,储集空间纵横向非均质性强,构造复杂多变,水平井地质导向难度大。Microscope随钻电阻率成像测井仪提供多种探测深度的电阻率成像图形,有利于准确把握储层和构造特征,减少钻井风险。分析了四川盆地碳酸盐岩储层的特征和Microscope随钻电阻率成像测井仪的特点,提出了水平井地质导向中利用成像资料计算地层倾角的方法、判断井眼轨迹与地层空间关系的思路以及切入角的计算方法;提出了Microscope随钻电阻率成像图中裂缝、断层、溶蚀孔洞、溶蚀洞穴、井眼崩落等储层特征的识别方法。实例应用表明,Microscope高分辨率随钻电阻率成像能够有效地应用于地层倾角计算、构造分析和裂缝识别,强化了地质导向实时导向决策的准确性和及时性。  相似文献   

13.
针对中低孔隙度渗透率储层钻井液侵入特征的研究较少,没有形成有效的规律性认识。提出了利用5岩心联测实验进行钻井液侵入规律研究的新思路,将动态联测实验数据与实际测井资料相结合,形成了中低孔隙度渗透率储层钻井液侵入规律认识。并建立了不同孔隙度渗透率条件下中低孔隙度渗透率储层钻井液侵入速率计算模型,进而得到钻井液侵入储层深度。在研究区进行了应用,为测井解释、射孔参数优化设计和压裂施工设计提供了指导性建议。  相似文献   

14.
东海西湖凹陷区块存在一批大型低孔渗油气田,这些油气田大多埋藏较深,地层岩性均质性差,砂泥岩互层胶结疏松且夹发育煤层,这些地质特征易导致钻井过程中泥岩水化膨胀、剥落掉块以及煤层垮塌等井下复杂情况。PEM钻井液体系是东海西湖凹陷区块广泛应用的成熟体系,使用效果和经济性良好。为满足东海井深日益增加的高温深井的作业需求,减少钻井复杂情况,同时更好地保护低孔渗油气储层,通过实验研究,进一步对PEM体系的抗高温稳定性、抑制性、封堵降滤失以及膨润土加量进行优化评价。优化后的PEM体系抗温达180 ℃、流变性能好、失水低,150 ℃下滚动回收率达到92.5%,润滑系数为0.087~0.11,在现场应用中取得了良好的效果。利用测井资料计算钻井液侵入储层的深度小于30 cm,储层保护效果良好,该钻井液体系在东海西湖凹陷区块中许多孔渗条件差、地质情况复杂的油气田取得了良好的应用效果。  相似文献   

15.
为了能够在低孔低渗储层中应用KCl聚合物钻井液进行钻井,研究了其防水锁性能。在探讨水锁损害机理的基础上,提出了防水锁损害的技术对策,通过向KCl聚合物钻井液中加入防水锁剂FCS和油膜暂堵剂GPJ,提高该钻井液的防水锁性能,并对其防水锁效果进行了评价。岩心自吸试验表明,岩心的钻井液滤液饱和度由76.24%降至35.41%,钻井液的防水锁性能大大提高。钻井液体系优化后,钻井液滤液对岩心的侵入量和深度都明显降低,返排能力增强,岩心动态污染渗透率恢复率达到90%以上。研究表明,该提高钻井液防水锁性能的方法可行,拓宽了KCl聚合物钻井液在低孔低渗储层中的应用。   相似文献   

16.
基于阿曼DLL油田高孔低渗碳酸盐岩油藏的随钻测井(LWD)和电缆测井资料,综合研究了从钻开储集层到完井测井时间内钻井液侵入对高孔低渗碳酸盐岩储集层电阻率的影响。结果表明,钻井液侵入对储集层电阻率的影响程度与储集层的孔隙度、钻井液柱与地层压力差、含水饱和度、钻井液矿化度以及侵入时间相关,其与孔隙度增加呈指数增大关系,与钻井液柱和地层压力差呈对数增大关系,与含水饱和度以及侵入时间呈幂指数增大关系。根据DLL油田LWD测井资料和MDT压力资料,得出储集层电阻率受钻井液侵入影响的校正方程。由校正后电阻率计算的含油饱和度比电阻率校正前计算的含油饱和度增加了6.3%~20.0%,平均增加10.2%。图9表4参16  相似文献   

17.
针对油基钻井液的储层损害机理,室内评估了油基钻井液各个组分的储层损害程度,表明油基钻井液造成储层伤害的主要因素是微细颗粒固相侵害和润湿反转伤害,相渗透率伤害也是一个重要原因,油基钻井液更容易对低渗储层或低渗区域造成损害,其各个单独组分对地层能够造成不同程度的伤害,但是由于能够严格控制钻井液滤失和封堵性能,体系能够有效减少固相和液相的侵入。这也说明油基钻井液整体侵害并不是简单的各个组分侵害的叠加,严格控制滤失和有效封堵是保护储层的主要手段。  相似文献   

18.
针对页岩气水平井钻探过程中井壁失稳风险大、钻井液性能要求高和商业开发降本提效的迫切需求,基于页岩储层特征、水平井工程施工要求,构建、研制了一套性能稳定的低油水比油基钻井液体系。室内试验表明,该油基钻井液具有良好的热稳定性、抗污染性、封堵性和乳化稳定性,而且塑性黏度较低、切力适中、流变性能较好,可以满足页岩气水平井钻井的要求。低油水比油基钻井液在涪陵页岩气田5口井进行了现场应用,通过采取低油水比胶液维护、固相控制和随钻封堵等配套措施,实现了将油水比控制在70/30以下,较该气田以往油基钻井液基础油用量降低15%,获得良好的降本效果。页岩气水平井低油水比油基钻井液能有效降低涪陵页岩气田钻井成本,有力支撑了页岩气低成本商业开发,对国内其他地区页岩气开发也具有借鉴意义。   相似文献   

19.
红河油田延长组长8油层组为低孔低渗致密碎屑岩储集层,孔隙结构复杂、物性差、非均质性强,储层微孔隙发育、束缚水饱和度高,导致电阻率测井对流体的辨识能力较弱,低阻油层、水层误判现象频出。针对研究区致密碎屑岩储层特点,立足测井资料,综合运用测试、地质分析等资料,采用视地层水电阻率比值法、可动水分析法、核磁共振差谱法等方法开展了碎屑岩致密储层测井流体识别及适用性分析综合研究,取得良好效果。  相似文献   

20.
随着能源需求日趋紧张,向深部高温、低孔低渗油气储层进军已经成为很多油田区块保障产能和增加产量的一个重要战略.而钻井过程中高温、低孔低渗储藏面临的储层伤害问题,因为钻井液技术的局限没有得到很好的解决.为此,研制开发了1套抗温达170℃的无黏土相抗温水基钻井液体系PRD-HT,该体系高温稳定性、综合性能良好,为高温、低孔低渗油气田的安全高效开发提供了有力的钻井液技术支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号