首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
介绍了选区激光熔化成形GH4169合金存在的球化、孔洞等常见缺陷的形成机理及工艺控制现状,重点分析了激光功率、扫描速率、铺粉厚度等工艺参数对选区激光熔化成形GH4169合金成形件组织性能的影响规律,以及热处理、颗粒增强等组织性能调控手段对选区激光熔化成形GH4169合金组织性能影响。从工艺控制、材料强化设计等方面对选区激光熔化成形GH4169合金进行展望,认为利用选区激光熔化成形技术开展颗粒增强GH4169复合材料的设计与成形是进一步提升选区激光熔化成形GH4169合金性能的有效途径。  相似文献   

2.
选区激光熔化(selective laser melting,SLM)技术因具有可定制化、加工周期短及精度高等特点,在工业生产中得到广泛应用。本文对选区激光熔化技术及其在铝合金及铝基复合材料制备的研究现状进行了综合性论述。通过论述选区激光熔化特性引出选区激光熔化打印铝合金的优势。介绍了适用于选区激光熔化技术的铸造Al?Si系合金,结合扫描策略和工艺参数优化,探究了选区激光熔化铝硅合金的微观结构、相组成和力学性能变化规律。讨论了选区激光熔化微/纳米陶瓷强化铝基复合材料的研究现状,分析与总结了添加强化颗粒对组织结构、相对密度、润湿性及相应力学性能的强化机理。总结了工业界与学术界关注的新型高强度铝合金材料的开发及其选区激光熔化的制备,重点论述了新型铝合金的固溶强化和析出相强化机理,并分析了对相对密度和力学性能的影响因素。最后对选区激光熔化铝合金发展趋势及现阶段存在的问题进行了展望。  相似文献   

3.
近年来,越来越多的研究报道了粉末床熔融成形技术。这一技术通过热源扫描熔化粉末,逐层堆积直接成形复杂三维金属零件结构,能够极大地缩短产品生产周期,提高生产效率,特别是在选区激光熔化(SLM)以及选区电子束熔化(SEBM)制备铜及铜铬系合金方面取得了很大的突破。本文综述了粉末床熔融成形技术的基本原理和优势,以及在增材制造(AM)技术中,铜系材料打印存在的主要困难。介绍了不同制备方法对材料性能的影响,重点对比了SLM工艺在铜系金属上的高反射率问题,进而阐明提高铜对激光的吸收率是该成形技术的研究重点,以及SEBM工艺在铜系金属中存在的表面粗糙度问题的重要性。探讨了更为前沿的一种电子束-激光符合选区融化(EB-LHM)技术,虽然其工艺更复杂但能结合不同打印方法提升性能。探讨了不同成形工艺对材料微观结构和力学性能的影响,并对材料的打印方式进行了评价。最后对目前该领域存在的问题和未来的研究方向进行了展望。  相似文献   

4.
激光选区熔化(SLM)是一种在医疗领域应用越来越广泛的3D打印工艺,用SLM技术打印齿科钛合金粉末,可以制作出个性化且具有复杂结构的口腔医疗器械。为了研究粉末粒度对SLM工艺的成形适用性,本研究选择了齿科用Ti-6Al-4V合金粉末作为成形材料,通过不同目数的筛网对粉末进行分级,得到不同粒度范围的钛合金粉末。采用EOS M280设备分别成形不同粒度范围的粉末,并对成形过程和成形件表面质量进行对比分析,得出当粉末粒度范围为15~53μm时,熔道连续无缺陷,成形件表面光滑平整,有金属光泽。该粒度范围粉末成形件的内部孔洞很少,强度和塑性均优于铸造件。粒度范围为15~53μm的齿科用钛合金粉末适用于激光选区熔化工艺。  相似文献   

5.
《钢铁钒钛》2021,42(3):64-73
采用射频等离子体球化技术对氢化破碎不规则形貌的钛钽合金粉末进行球化处理,研究了送粉速率、载气流量和鞘气中氦气流量等工艺参数对钛钽合金粉末球化率、粉体性能和显微结构的影响,并开展了球化后钛钽合金粉末选区激光熔化成形适用性评价。结果表明:经过射频等离子体球化处理后,粉末截面组织由板条状α″-Ti和胞状β-Ti组成,球化率在98%以上,粒度分布变宽,平均粒径由球化前21.41μm增大至32.3μm。粉末球化率受送粉速率、载气流量和鞘气中氦气流量等因素影响,当送粉速率为35 g/min,载气流量为5.5 L/min,鞘气中氦气流量为40 L/min,球化效果最好。与原料粉末相比,球化后粉末的霍尔流速(50 g计)为6.27 s,松装密度由1.38g/cm~3提高至3.11 g/cm~3,振实密度由2.54 g/cm~3提高至3.48 g/cm~3。此外,球化后的钛钽合金粉末具有良好的选区激光熔化适用性,成形后制件致密度大于99%,微观组织为针状α″-Ti和胞状β-Ti,钛、钽元素分布均匀,无未熔融的钽颗粒,显微硬度(HV)达到725。  相似文献   

6.
基于紧耦合气雾化技术制备符合选区激光熔化用18Ni300合金粉末, 重点研究了雾化压力对粉末粒度(中值粒径, D50)、粒度分布、球形度、氧含量、流动性和松装密度等特性的影响。结果表明: 雾化压力对上述粉末特性影响显著, 当雾化压力在3.5 MPa到4.5 MPa范围时, 随着压力的提高, 粉末粒度降低、表面形貌改善、流动性变好、松装密度增加。当雾化压力为4.5 MPa时, 所制备的粉末综合特性最优, 粉末粒度(D50)为34 μm, 球形度为0.77, 氧含量为0.02%(质量分数), 流动性为17.4[s·(50g)-1], 松装密度为4.32g·cm-3, 15~53 μm粒径范围粉末收得率为38.1%, 满足选区激光熔化技术对金属粉末性能的要求。  相似文献   

7.
张亚伟  施麒  谭冲  刘辛  李贵发  郑海忠 《钢铁钒钛》2021,42(6):90-96,170
分别以Ni+Ti元素混合粉末和NiTi预合金粉末为原料,采用选区激光熔化工艺打印成形.重点研究了在相同打印工艺参数下原料粉末对成形件致密度、物相组成、显微组织、显微硬度的影响,从而反馈说明所用打印粉末对成形件性能的影响.结果 表明:在相同打印工艺参数下,整体上NiTi预合金粉末成形件的致密度较高,而Ni+Ti混合粉末成形件的显微硬度较高.对于同一种粉末,随着能量密度的增大,成形件的致密度先增大后减小,而显微硬度先减小后增大.NiTi预合金粉末成形件有致密的微观结构且相分布均匀,但存在少量孔隙.Ni+Ti混合粉末成形件的微观结构有和构建方向垂直的贯穿式裂纹以及不均匀的基体相,但几乎没有孔隙.  相似文献   

8.
CoCrFeNi高熵合金因其单一稳定的面心立方固溶体结构,具有优异的塑性变形能力和较高的屈服强度,已成为众多追求高韧性制件研究的热门体系之一。同时选区激光熔化技术因其成形尺寸灵活和超快加热冷却速率,具备传统制备方式不可比拟的优势。通过梳理近些年选区激光熔化技术成功制备出的CoCrFeNiX高熵合金体系,首先针对8种不同合金体系的相结构和组织形貌,分析了组织结构对力学性能的影响;其次针对3种采用不同工艺参数制备的CoCrFeNi-X高熵合金成形件,分析制备工艺对成形密度及力学性能的影响;最后就合金成分设计对CoCrFeNi-Alx、CoCrFeNi-Mn两种主流合金体系做了详细研究现状分析。期望对采用选区激光熔化技术制备CoCrFeNi-X体系高熵合金的实验研究和工业应用提供一定的理论指导。  相似文献   

9.
选区激光熔化(SLM)影响制品性能的工艺参数包括激光功率、扫描速度等,上述因素可统一为激光能量密度(Laser Energy Density,LED)表示,激光能量密度的大小直接决定粉末的熔化状态,并最终影响SLM制品的性能。本文采用真空气雾化制备的GH4169粉末作为原料,设计了激光能量密度不同的对比实验,探讨了激光能量密度对于SLM制品的影响;建立了激光能量输入熔化粉末的计算关系,通过理论计算进一步研究了激光能量密度变化对制品产生影响的机理。研究结果表明:激光能量密度对于SLM成形制品存在影响,对于同种粉末,在一定参数范围内,激光能量密度越大的制品,其密度及硬度相对更高,而对于参数不同,激光能量密度相近的制品,粉末的熔化效果接近,密度及硬度水平相当;SLM工艺的主要影响因素为激光功率,扫描速度及粉末粒度,且激光功率对粉末熔化的影响相对较大,故对于相同成分及粒度粉末的SLM工艺参数优化而言,应当优先确定合适的激光功率,再调整扫描速度。  相似文献   

10.
利用不同成形工艺、原料粉末和热处理制备激光选区熔化3D打印AlSi10Mg试样并进行拉伸性能研究,讨论了影响激光选区熔化3D打印AlSi10Mg拉伸性能的影响因素,包括3D打印成形工艺、粉末物理性能、热处理制度等.结果表明:激光能量密度通过影响试样相对密度进而对拉伸性能产生影响,能量密度过低时,试样孔洞大多分布在熔池交...  相似文献   

11.
本研究系统考察了激光功率和扫描速度对316L不锈钢粉末选区激光熔化工艺成形熔道、制品微观组织及力学性能的影响,并分析了各类缺陷的形成原因。研究结果表明:在低激光功率和高扫描速度条件下,熔道中出现了大量球状颗粒,这些颗粒之间的空隙恶化了下一层粉末的熔化条件,这正是成形制品中熔道分布混乱以及孔洞、裂纹产生的根本原因,进而导致成形制品力学性能降低;在高激光功率和低扫描速度条件下,熔池快速升温/冷却的热应力作用增强,使得成形制品的熔道交界处也存在孔洞和裂纹等缺陷。在本研究实验条件下,激光功率为350 W,扫描速度为1750 mm/s时,SLM成形制品的力学性能最为优异,其中抗拉强度为731 MPa、屈服强度为638 MPa、断后伸长率为40.0%,致密度为96.27%。  相似文献   

12.
无损检测模拟试块在实际探伤领域有着重要应用,但试块及其缺陷的制备存在较大困难,增材制造由于独特的成型工艺,使得缺陷的自由设计及试块加工成型成为可能。实验利用激光选区熔化(Selective laser melting,SLM)增材制造技术制备了材质为316L不锈钢的无损检测模拟试块,在试块内部设计了缺陷孔径尺寸为ø0.1 mm~ø0.6 mm的6个数值梯度的模拟孔洞和裂纹类缺陷。研究结果表明:金属粉末经SLM方法成型试块后,化学成分无明显变化;缺陷设计孔径为ø0.4 mm~ø0.6 mm时,缺陷制备重复性较好,且形态相对均完整;由于成型过程中激光穿透作用和热影响区熔化粘粉现象导致缺陷形状精度变差。模拟孔洞和裂纹缺陷的超声波检测波形变化信息及规律与缺陷实际状态相符。激光选区熔化增材制造技术应用于无损检测模拟试块的制备具有可行性。  相似文献   

13.
Spherical 24CrNiMo alloy steel powder used for selective laser melting (SLM) fabricating high-speed train brake disc was prepared by the vacuum induction melting gas atomisation (VIGA) method. Powder morphology, particle size, flowability and microstructure were measured. Part properties fabricated by SLM were investigated via some modern analysis method. The experimental results showed that powder mean particle size D50 was 75?μm, flowability was 16.69?s/50?g and apparent density was 4.71?g?cm?3. 24CrNiMo alloy steel specimen microstructures prepared by SLM consisted of proeutectoid ferrite and granular bainite. Average microhardness was 346?HV, tensile strength was 1223?MPa, extensibility was 13.1% and the product of strength and elongation was 16.1?GPa%. 24CrNiMo alloy steel powder prepared by the VIGA method had good laser printability and huge potential application value for SLM-fabricated brake disc.  相似文献   

14.
The fatigue properties and the fracture mechanisms of the Ti–6Al–4V alloy produced by selective laser melting (SLM) from a powder of an CL41TiELI titanium alloy have been studied. Cylindrical blanks were grown at angles of 90° and 45° to a platform. The best fatigue strength is observed in the samples the blanks of which were grown at an angle of 45°. It is found that the structure of the SLM material can contain portions with unmelted powder particles, which are the places of initiation of fatigue cracks.  相似文献   

15.
概述了武钢炼钢总厂四分厂QRD钢连铸对保护渣的要求,通过对QRD钢特点的分析,对保护渣物理化学性能进行了研究,确定了适合QRD钢结晶器保护渣指标,该保护渣具有低熔点、高黏度、低碱度、好的保温性能和熔化均匀性的特点。工业试用表明,使用此保护渣浇铸无漏钢,未发生预报,铸坯质量良好,能够满足四分厂的生产需求。  相似文献   

16.

Selective laser melting (SLM) is an additive manufacturing (AM) technique designed to use a high energy density laser to fuse metallic powders for producing three-dimensional parts. So far, most studies of SLM have been focused on using virgin metal powders. There are few comprehensive studies on the microstructure and mechanical properties of SLM-produced parts using recycled powders, especially for maraging steels. In this study, we employ recycled steel powder (reused after 113 building cycles) in the SLM process to print multiple shaped components and systematically characterize the microstructure and mechanical properties (indentation, tensile, and Charpy testing). Our results show that maraging steel produced with recycled powder exhibit the nearly identical microstructure and mechanical properties (940 MPa yield strength, 1127 MPa ultimate tensile strength, 11 pct elongation, and 47.5 J room temperature impact fracture energy) to those produced using virgin powders. This study provides a useful generic guide towards using recycled metal powders in the SLM processing, promoting an economic solution to industrial productions.

  相似文献   

17.
Additive manufacturing (AM) offers a fully integrated fabrication solution within many engineering applications. Particularly, it provides attractive processing alternatives for nickel-titanium (Ni–Ti) alloys to overcome traditional manufacturing challenges through layer by layer approach. Among powder-based additive manufacturing processes, the laser beam melting (LBM) and the electron beam melting (EBM) are two promising manufacturing methods for Ni–Ti shape memory alloys. In these methods, the physical characteristics of the powder used as raw material in the process have a significant effect on the powder transformation, deposition, and powder-beam interaction. Thus, the final manufactured material properties are highly affected by the properties of the powder particles. In this study, the Ni?Ti powder characteristics are investigated in terms of particle size, density, distribution and chemical properties using EDS, OM, and SEM analyses in order to determine their compatibility in the EBM process. The solidification microstructure, and after built microstructure are also examined for the gas atomized Ni–Ti powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号