首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 222 毫秒
1.
稀土元素Gd对Mg-Zn-Zr镁合金组织和性能的影响   总被引:4,自引:0,他引:4  
通过砂型铸造制备Mg-5Zn-0.6Zr和Mg-5Zn-3Gd-0.6Zr合金,并通过XRD、OM、SEM和EDS以及拉伸试验研究合金化稀土元素Cd对Mg-5Zn-0.6Zr合金铸造组织和力学性能的影响.结果表明:合金Mg-5Zn-0.6zr铸态组织由a-Mg和MgZn2等合金相组成.经固溶处理后,共晶组织全部溶入基体,晶界消失;添加合金化元素Gd后,试验合金Mg-5Zn-Gd-0.6Zr的晶粒显著细化,晶界处析出Mg-Zn-Gd三元相,在晶界析出相的周围均有大量弥散的颗粒状析出物,经固溶处理后,晶界处仍有未溶的化合物存在,但连续网状的Mg-Zn-Gd三元相分解为孤立的颗粒状或者长条状;在铸态下,合金Mg-5Zn-0.6Zr的力学性能优于Mg-5Zn-3Gd-0.6Zr.但经T4和T6态热处理后,合金Mg-5Zn-3Gd-0.6Zr的屈服强度和延伸率优于Mg-5Zn-0.6Zr.随着温度的升高,合金Mg-5Zn-0.6Zr 的抗拉伸强度显著下降,而Mg-5Zn-3Gd-0.6Zr的力学性能在高温区均优于Mg-5Zn-0.6Zr.  相似文献   

2.
研究了不同挤压温度对Mg-2.0Zn-0.3Zr-0.9Y新型镁合金组织和性能的影响。结果表明,降低挤压温度,Mg-2.0Zn-0.3Zr-0.9Y合金的平均晶粒尺寸得到显著细化,合金的屈服强度和抗拉强度得到大幅提高,而延伸率变化不大。随着挤压温度的降低,{10ī2}织构强度不断增强,{0002}基面环形织构强度减弱。Mg-2.0Zn-0.3Zr-0.9Y合金的力学性能不但受到组织平均晶粒大小的影响,还受到织构分布的影响。挤压温度为330℃时可获得细小的组织和优良的力学性能,平均晶粒尺寸达到1.76μm,合金抗拉强度达到323MPa,屈服强度为309MPa,延伸率为21.92%。  相似文献   

3.
研究了往复挤压对准晶增强Mg-0.85Zn-0.15Y-0.6Zr铸态合金显微组织及力学性能的影响。结果表明,往复挤压可大幅度细化Mg-0.85Zn-0.15Y-0.6Zr铸态合金组织,且使I相等相对均匀地分布在α-Mg基体中。同铸态合金相比,挤压后Mg-0.85Zn-0.15Y-0.6Zr合金的屈服强度、抗拉强度和延伸率分别提高了75.8%,43.2%和35%。  相似文献   

4.
本文通过两种不同冷却速度制备成分相同、铸造组织特征不同的Mg-4.4Zn-0.3Zr-0.4Y铸态合金,研究不同铸造组织特征对挤压变形态合金组织和力学性能的影响。研究结果表明:与空冷铸造合金相比较,通过水冷冷却增大了熔体冷却速度,使铸态组织得到细化,抑制了W-相(Mg3Y2Zn3相)的形核,并促进了I-相(Mg3YZn6相)的生成,获得了更大体积分数的准晶相(I-相)。经过挤压变形后,水冷铸造合金中的再结晶晶粒细小均匀,经过挤压变形破碎的细小I-相颗粒弥散分布在基体上,{0002}基面织构得到弱化,而{101 ?2}织构强度增强,从而使挤压态Mg-4.4Zn-0.3Zr-0.4Y合金的强度和塑性都得到了大幅的提高。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y合金经过挤压变形后,屈服强度和抗拉强度分别达到297.0MPa和327.3MPa,与空冷铸造挤压态合金相比分别提高了46.4MPa和21.4MPa。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y挤压态合金的延伸率达到14.8%,与空冷铸造挤压态合金相比增大了4.7%。  相似文献   

5.
采用低压铸造制备了Mg-xZn-3Y-0.7Zr合金,利用金相显微镜、扫描电镜、能谱分析仪、热分析仪等设备,研究了Zn含量对合金微观组织的影响,并通过热处理工艺来改善合金微观组织中的第二相分布,从而提高合金的力学性能。结果表明,Mg-5Zn-3Y-0.7Zr合金主要含有α-Mg和W-Mg3Zn3Y2相,其中W相呈网状在晶界上分布;当Zn含量为8%时,铸态组织中树枝晶明显增多,并且出现了I-Mg3Zn6Y相;热处理后I相消失,网状分布的W相被打断,在三角晶界处仍有鱼骨状片层共晶组织。Mg-5Zn-3Y-0.7Zr合金铸态抗拉强度、屈服强度和伸长率分别为223.8MPa、124.9MPa和7.3%,经过T6处理后提升效果不明显,而Mg-8Zn-3Y-0.7Zr合金在铸态时力学性能较差,经过T6处理后其抗拉强度、屈服强度和伸长率为263.3 MPa、207.9 MPa和2.2%。Mg-5Zn-3Y-0.7Zr合金的断裂机制为准解理断裂,断口处有发生塑性变形而出现的撕裂棱。Mg-8Zn-3Y-0.7Zr合金的断裂机制主要为解理断裂,并没有发现韧窝。  相似文献   

6.
《铸造》2017,(3)
利用光学显微镜、扫描电子显微镜和力学性能测试等手段,研究稀土Gd对Mg-5Zn-0.6Zr镁合金铸态组织和力学性能的影响。结果表明:Mg-5Zn-0.6Zr合金铸态组织由α-Mg和MgZn_2等合金相组成。添加稀土Gd后,合金中的粗大网状MgZn_2相得到了显著细化。当稀土Gd的添加量为1.0%时,合金的力学性能达到最优值,其极限抗拉强度和伸长率分别为223 MPa和7.6%。稀土Gd有效细化合金组织,在合金中生成2~5μm细小弥散分布的MgZnGd金属间化合物有效地阻碍位错运动,从而显著改善合金的力学性能。  相似文献   

7.
利用光学显微镜、扫描电镜、X射线衍射分析仪、热/力模拟试验机、拉伸试验机等研究了Mg-1.9Zn-0.9Mn-xNd合金铸态组织与性能。结果表明:Mg-1.9Zn-0.9Mn合金组织为α-Mg+α-Mn+MgZn,当含钕量大于0.22 mass%时合金中出现了Mg-ZnNd三元合金相T_1(六方晶格)和T_2(斜方晶格);随含钕量增加,三元合金相数量增大,屈服强度及显微硬度随之增加,但当三元合金相形态由不连续的块状向断网状和网状转变后,受力时晶间产生裂纹,使抗拉强度及断后伸长率降低;在热压缩试验中合金发生了不完全再结晶,钕使峰值应力从50.8 MPa提高到92.4 MPa,并且使动态再结晶晶粒细化。  相似文献   

8.
采用重力铸造方法制备了3种Mg-6Zn-(1.6-x)Gd-xEr-0.5Zr(x=0.4,0.8和1.2)合金,研究了3种铸态合金的显微组织和拉伸性能。结果表明:3种合金的组织均主要由α-Mg基体和准晶相组成。随着Er含量的增加,合金中初生α-Mg晶粒逐渐细化,其形貌由等轴枝晶状转变为蔷薇状,同时呈不连续网状分布在晶界处的第二相也有逐渐断开的趋势。随着Er含量的增加,合金的拉伸性能逐渐提高。当Er含量为1.2 mass%时,Mg-6Zn-0.4Gd-1.2Er-0.5Zr合金的极限抗拉强度和伸长率分别为209 MPa和10.4%,相较于Mg-6Zn-1.2Gd-0.4Er-0.5Zr合金提升了27.4%和33.3%。  相似文献   

9.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪、透射电镜以及拉伸试验机,研究Zn含量对时效态Mg-9Gd-4Yx Zn-0.5Zr(x=0,0.5,1.0,1.5,2.0)合金组织和力学性能的影响。结果表明:时效态Mg-9Gd-4Y-0.5Zr合金显微组织由基体α-Mg和共晶相Mg5(Gd,Y)组成。加入Zn元素后,合金组织中出现Mg5(Gd,Y,Zn)相和Mg12Zn(Gd,Y)相,分布于晶界或晶内。当Zn含量为1%以下时,合金组织得到明显细化,第二相分布均匀,力学性能显著提升。当Zn含量达到1%时,合金抗拉强度和屈服强度到达最大值,分别为279.4 MPa和220 MPa。随着Zn含量进一步增加,合金组织粗化,第二相含量迅速增加且沿晶界逐渐呈网状分布并逐渐向晶内深入,合金强度也明显降低。  相似文献   

10.
采用2种不同铸造冷却方式制备成分相同、组织特征不同的Mg-4.4Zn-0.3Zr-0.4Y镁合金,研究不同铸造组织特征对挤压变形态合金组织和力学性能的影响。结果表明:与空冷铸造合金相比,水冷增大了熔体冷却速度,使合金铸态组织得到细化,抑制了W-相(Mg_3Y_2Zn_3相)的形核,并促进了I-相(Mg_3YZn_6相)的生成,获得了更大体积分数的准晶相(I-相)。经过挤压变形后,水冷铸造合金中的再结晶晶粒细小均匀,I-相颗粒经过挤压破碎后弥散分布在基体上,{0002}基面织构得到弱化,而■织构强度增强,从而使Mg-4.4Zn-0.3Zr-0.4Y挤压态合金的强度和塑性都得到了大幅提高。水冷铸造合金经过挤压变形后,屈服强度和抗拉强度分别达到297.0和327.3 MPa,与空冷铸造挤压态合金相比分别提高了46.4和21.4 MPa。水冷铸造挤压态合金的延伸率达到14.8%,与空冷铸造挤压态合金相比增大了4.7%。  相似文献   

11.
Wang  Jing  Fang  Xiao-gang  Wu  Shu-sen    Shu-lin 《中国铸造》2017,14(3):199-204
To investigate the effects of solution temperature and the decomposition of I-phase on the microstructure, phase composition and mechanical properties of as-cast Mg-6Zn-1.4Y-0.6Zr alloy, solution treatment at 440 oC, 460 oC and 480 oC and further aging treatment were conducted on the alloy. The results indicate that the net-like intermetallic compounds(mainly I-phase) dissolve into the α-Mg matrix gradually with the increase of solution temperature from 440 oC to 480 oC. Besides, the I-phase decomposes completely at 480 oC, with the formation of fine W-phase(thermal stable phase) and Mg_7Zn_3 phase. In addition, a great number of fine and dispersive Mg-Zn binary phases precipitate in the α-Mg matrix during the aging treatment. Due to the increase of solute atoms and the precipitation of strengthening phases, such as W-phase and Mg-Zn phases, the optimal strength is obtained after solution treatment at 460 oC for 8 h and aged at 200 oC for 16 h. The yield strength(YS), ultimate tensile strength(UTS) and elongation are 208 MPa, 257 MPa and 3.8%, respectively. Compared with the as-cast alloy, the increments of YS and UTS are 117% and 58%, respectively, while the decrement of elongation is 46%.  相似文献   

12.
采用XRD和SEM等微观表征技术研究不同Zn添加量对Mg-2Er合金微观组织和力学性能的影响。结果表明:当Zn添加量为1%和2%时,合金主要相组成为W相和α-Mg;当Zn添加量为4%-10%时,合金中则有I相析出,合金相成分变为W相、I相和α-Mg;当Zn添加量增加至12%时,W相消失,合金中主要第二相则为I相和Mg4Zn7相。当Zn添加量为6%时,合金具有较好的拉伸力学性能,其抗拉强度、屈服强度和伸长率分别为224 MPa、134 MPa和10.4%。  相似文献   

13.
Mg-6Al-0.3Mn-xY(x=0,0.3,0.6 and 0.9,mass fraction,%) magnesium alloys were prepared by casting and hot rolling process.The influence of yttrium on microstructure and tensile mechanical properties of the AM60 magnesium alloy was investigated.The results reveal that with increasing the yttrium content,Al2Y precipitates form and the grain size is reduced.The ultimate strength,yield strength and elongation at room temperature are 192 MPa,62 MPa and 12.6%,respectively,for the as-cast Mg-6Al-0.3Mn-0.9Y alloy.All ...  相似文献   

14.
采用XRD、OM、SEM和EDS等手段研究Sn对Mg-6Al-1.2Y-0.9Nd合金微观组织和力学性能的影响。结果表明, Sn可以显著提高合金从室温到175 ℃区间的抗拉强度,当Sn含量为1%时,镁合金在室温和175 ℃时抗拉强度达到最大值,分别为242和192 MPa,合全的拉伸断口为具有塑性特征的准解理断裂。 Sn的加入使合金的显微组织得到明显细化,并出现高熔点Mg2Sn合金相。合金力学性能的提高主要是由于细晶强化、弥散强化和固溶强化。  相似文献   

15.
通过熔炼和压力加工研制了一种多元低密度NbTiAlVZr合金,合金密度为5.9g/cm3,是目前难熔合金中密度最低的一种。采用光学显微镜,透射电镜,拉伸试验机对合金微观组织和力学性能进行表征,结果表明:该合金室温平均抗拉强度为990MPa,延伸率为16%,1100℃抗拉强度达到80MPa,延伸率为44%。该合金是一种综合了固溶强化和第二相TiC纳米粒子弥散强化的新型铌合金,同时也是一种塑性好,可进行压力加工成型的低密度铌合金。  相似文献   

16.
通过铸造和300℃热加压制备细晶Mg-6Zn-4Y合金,利用XRD、OM、SEM和TEM研究合金组织,并测试其室温拉伸性能。结果表明,合金主要由α-Mg和W相两相组成,挤压态合金具有双峰晶粒尺寸分布;细小晶粒为动态再结晶晶粒,平均尺寸为1.2μm;粗大晶粒(占面积分数的23%)为未再结晶区域,并沿挤压方向被拉长。合金的极限抗拉强度、屈服强度和伸长率分别为(371±10)MPa,(350±5)MPa和(7±2)%,其工程应力—应变曲线有明显的屈服点。合金高强度归因于晶粒细化和W相、纳米沉淀颗粒及强基面织构的增强作用。  相似文献   

17.
In the present study, the effect of Zn content on the microstructure and deformation behavior of the as-cast Mg–Zn–Y–Nd alloy has been investigated. The results showed that as Zn content increased, the volume fraction of secondary phases increased. Moreover, the phase transformation from W-phase to W-phase and I-phase occurred. In the as-cast state,W-phase exists as eutectic and large block form. When Zn content increases to 6 and 8%(wt%), small I-phase could precipitate around W-phase particles. Additionally, the effect of Zn content on the tensile properties and deformation behavior varies with the testing temperature. At room temperature, the tensile strength increases with Zn content, whereas the elongation increases initially and then decreases. At 250 °C, as Zn content increases, the tensile strength decreases initially and then increases slightly, whereas the elongation decreases. At 350 °C, the elongation increases with Zn content,whereas the tensile strength decreases initially and then increases slightly.  相似文献   

18.
以Mg6Zn2Y为基础研究了Zn、Y含量的变化对Mg-Zn-Y基合金组织和性能的影响.结果表明铸态下增加1%Zn的合金的组织变得粗大,抗拉强度降低约10%,伸长率降低25%;同时添加1%Zn和1%Y的合金组织明显细化,抗拉强度和伸长率分别提高11%和17%;挤压后由于Y的加入形成了高熔点的化合物相,合金受这些相抑制,没有发生动态再结晶,力学性能因挤压变形得到不同程度的提高,对比分析Mg7Zn3Y合金拥有抗拉强度355 MPa和伸长率4.5%较好的综合性能.  相似文献   

19.
The effects of trace Ag element on the precipitation behaviors and mechanical properties of the Mg−7.5Gd− 1.5Y−0.4Zr (wt.%) alloy by means of tensile test, X-ray diffractometry, scanning electron microscopy, electron backscattered diffractometry, and scanning transmission electron microscopy. There is an unusual texture (〈0001〉//extrusion direction) in the extruded Mg−Gd−Y−Zr alloys containing 0.5 wt.% Ag. During the aging periods at 225 °C, the addition of the trace Ag does not form new precipitates, just accelerates aging kinetics, and refines β′ precipitates, thereby increasing the number density of the β′ precipitates by Ag-clusters. Moreover, the Mg−Gd−Y−Zr alloy containing 0.5 wt.% Ag shows the most excellent synergy of strength and plasticity (408 MPa of ultimate tensile strength, 265 MPa of yield strength, and 12.9% of elongation to failure) after peak-aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号