首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wind energy has emerged as a strong alternative to fossil fuels for power generation. To generate this energy, wind turbines are placed in a wind farm. The extraction of maximum energy from these wind farms requires optimal placement of wind turbines. Due to complex nature of micrositing of wind turbines, the wind farm layout design problem is considered a complex optimization problem. In the recent past, various techniques and algorithms have been developed for optimization of energy output from wind farms. The present study proposes an optimization approach based on the cuckoo search (CS) algorithm, which is relatively a recent technique. A variant of CS is also proposed that incorporates a heuristic-based seed solution for a better performance. The proposed CS algorithms are compared with genetic and particle swarm optimization (PSO) algorithms, which have been extensively applied to wind farm layout design. Empirical results indicate that the proposed CS algorithms outperformed the genetic and PSO algorithms for the given test scenarios in terms of yearly power output and efficiency.  相似文献   

2.
In cloud computing task scheduling is one of the important processes. The key problem of scheduling is how to allocate the entire task to a corresponding virtual machine while maximizing profit. The main objective of this paper is to execute the entire task with low cost, less resource use, and less energy consumption. To obtain the multi-objective function for scheduling, in this paper we propose a hybridization of cuckoo search and gravitational search algorithm (CGSA). The vital design of our approach is to exploit the merits of both cuckoo search (CS) and gravitational search algorithms (GSA) while avoiding their drawbacks. The performance of the algorithm is analyzed based on the different evaluation measures. The algorithms like GSA, CS, Particle swarm optimization (PSO), and genetic algorithm (GA) are used as a comparative analysis. The experimental results show that our proposed algorithm achieves the better result compare to the existing approaches.  相似文献   

3.
Software testing is both a time and resource-consuming activity in software development. The most difficult parts of software testing are the generation and prioritization of test data. Principally these two parts are performed manually. Hence introducing an automation approach will significantly reduce the total cost incurred in the software development lifecycle. A number of automatic test case generation (ATCG) and prioritization approaches have been explored. In this paper, we propose two approaches: (1) a pathspecific approach for ATCG using the following metaheuristic techniques: the genetic algorithm (GA), particle swarm optimization (PSO) and artificial bee colony optimization (ABC); and (2) a test case prioritization (TCP) approach using PSO. Based on our experimental findings, we conclude that ABC outperforms the GA and PSO-based approaches for ATC.G Moreover, the results for PSO on TCP arguments demonstrate biased applicability for both small and large test suites against random, reverse and unordered prioritization schemes. Therefore, we focus on conducting a comprehensive and exhaustive study of the application of metaheuristic algorithms in solving ATCG and TCP problems in software engineering.  相似文献   

4.
针对无线多用户正交频分复用(OFDM)系统中功率分配问题,提出一种基于效用函数最大化框架的资源分配算法.在实际网络环境中,此类最优化算法为非凸的,利用经典最优化方法很难解决.为此,将智能优化中的粒子群方法应用到非凸优化算法设计中,并针对粒子群优化容易陷入局部极值点的问题,将Logistic混沌搜索嵌入PSO算法中,提出混沌粒子群算法.与同类算法相比,所提出算法不仅有效解决了非凸性问题,而且可以使系统具有更好的性能.  相似文献   

5.
Particle swarm optimization (PSO) is a powerful optimization technique that has been applied to solve a number of complex optimization problems. One such optimization problem is topology design of distributed local area networks (DLANs). The problem is defined as a multi-objective optimization problem requiring simultaneous optimization of monetary cost, average network delay, hop count between communicating nodes, and reliability under a set of constraints. This paper presents a multi-objective particle swarm optimization algorithm to efficiently solve the DLAN topology design problem. Fuzzy logic is incorporated in the PSO algorithm to handle the multi-objective nature of the problem. Specifically, a recently proposed fuzzy aggregation operator, namely the unified And-Or operator (Khan and Engelbrecht in Inf. Sci. 177: 2692–2711, 2007), is used to aggregate the objectives. The proposed fuzzy PSO (FPSO) algorithm is empirically evaluated through a preliminary sensitivity analysis of the PSO parameters. FPSO is also compared with fuzzy simulated annealing and fuzzy ant colony optimization algorithms. Results suggest that the fuzzy PSO is a suitable algorithm for solving the DLAN topology design problem.  相似文献   

6.
Coronary artery disease (CAD) is one of the major causes of mortality worldwide. Knowledge about risk factors that increase the probability of developing CAD can help to understand the disease better and assist in its treatment. Recently, modern computer‐aided approaches have been used for the prediction and diagnosis of diseases. Swarm intelligence algorithms like particle swarm optimization (PSO) have demonstrated great performance in solving different optimization problems. As rule discovery can be modelled as an optimization problem, it can be mapped to an optimization problem and solved by means of an evolutionary algorithm like PSO. An approach for discovering classification rules of CAD is proposed. The work is based on the real‐world CAD data set and aims at the detection of this disease by producing the accurate and effective rules. The proposed algorithm is a hybrid binary‐real PSO, which includes the combination of categorical and numerical encoding of a particle and a different approach for calculating the velocity of particles. The rules were developed from randomly generated particles, which take random values in the range of each attribute in the rule. Two different feature selection methods based on multi‐objective evolutionary search and PSO were applied on the data set, and the most relevant features were selected by the algorithms. The accuracy of two different rule sets were evaluated. The rule set with 11 features obtained more accurate results than the rule set with 13 features. Our results show that the proposed approach has the ability to produce effective rules with highest accuracy for the detection of CAD.  相似文献   

7.
Swarm-inspired optimization has become very popular in recent years. Particle swarm optimization (PSO) and Ant colony optimization (ACO) algorithms have attracted the interest of researchers due to their simplicity, effectiveness and efficiency in solving complex optimization problems. Both ACO and PSO were successfully applied for solving the traveling salesman problem (TSP). Performance of the conventional PSO algorithm for small problems with moderate dimensions and search space is very satisfactory. As the search, space gets more complex, conventional approaches tend to offer poor solutions. This paper presents a novel approach by introducing a PSO, which is modified by the ACO algorithm to improve the performance. The new hybrid method (PSO–ACO) is validated using the TSP benchmarks and the empirical results considering the completion time and the best length, illustrate that the proposed method is efficient.  相似文献   

8.
This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem.  相似文献   

9.
Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain preferable results in solving the mono-objective FJSP. However, they are very difficult to solve multi-objective FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which integrates local search and global search scheme possesses high search efficiency. And, TS is a meta-heuristic which is designed for finding a near optimal solution of combinatorial optimization problems. Through reasonably hybridizing the two optimization algorithms, an effective hybrid approach for the multi-objective FJSP has been proposed. The computational results have proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP, especially for the problems on a large scale.  相似文献   

10.
This article deals with a performance evaluation of particle swarm optimization (PSO) and genetic algorithms (GA) for traveling salesman problem (TSP). This problem is known to be NP-hard, and consists of the solution containing N! permutations. The objective of the study is to compare the ability to solve the large-scale and other benchmark problems for both algorithms. All simulation has been performed using a software program developed in the Delphi environment. As yet, overall results show that genetic algorithms generally can find better solutions compared to the PSO algorithm, but in terms of average generation it is not good enough.  相似文献   

11.
A new hybrid adaptive algorithm based on particle swarm optimization (PSO) is designed, developed and applied to the high school timetabling problem. The proposed PSO algorithm is used to create feasible and efficient timetables for high schools in Greece. Experiments with real-world data coming from different high schools have been conducted to show the efficiency of the proposed PSO algorithm. As well as that, the algorithm has been compared with four other effective techniques found in the literature to demonstrate its efficiency and superior performance. In order to have a fair comparison with these algorithms, we decided to use the exact same input instances used by these algorithms. The proposed PSO algorithm outperforms, in most cases, other existing attempts to solve the same problem as shown by experimental results.  相似文献   

12.
The flowshop scheduling problem has been widely studied and many techniques have been applied to it, but few algorithms based on particle swarm optimization (PSO) have been proposed to solve it. In this paper, an improved PSO algorithm (IPSO) based on the “alldifferent” constraint is proposed to solve the flow shop scheduling problem with the objective of minimizing makespan. It combines the particle swarm optimization algorithm with genetic operators together effectively. When a particle is going to stagnate, the mutation operator is used to search its neighborhood. The proposed algorithm is tested on different scale benchmarks and compared with the recently proposed efficient algorithms. The results show that the proposed IPSO algorithm is more effective and better than the other compared algorithms. It can be used to solve large scale flow shop scheduling problem effectively.  相似文献   

13.
High-rise buildings require the installation of complex elevator group control systems (EGCSs). In vertical transportation, when a passenger makes a hall call by pressing a landing call button installed at the floor and located near the cars of the elevator group, the EGCS must allocate one of the cars of the group to the hall call. We develop a particle swarm optimization (PSO) algorithm to deal with this car-call allocation problem. The PSO algorithm is compared to other soft computing techniques such as genetic algorithm and tabu search approaches that have been proved as efficient algorithms for this problem. The proposed PSO algorithm was tested in high-rise buildings from 10 to 24 floors, and several car configurations from 2 to 6 cars. Results from trials show that the proposed PSO algorithm results in better average journey times and computational times compared to genetic and tabu search approaches.  相似文献   

14.
Particle swam optimization (PSO) is a relatively new metaheuristic that has recently drawn much attention from researchers in various optimization areas. However, application of PSO for the capacitated vehicle routing problem (CVRP) is very limited. This paper proposes a simple PSO approach for solving the CVRP. The proposed PSO approach uses a probability matrix as the main device for particle encoding and decoding. While existing research used the PSO solely for assignment of customers to routes and used other algorithms to sequence customers within the routes, the proposed approach applies the PSO approach to both simultaneously. The computational results show the effectiveness of the proposed PSO approach compared to the previous approaches.  相似文献   

15.
This work presents a study on the performance of several algorithms on different continuous dynamic optimization problems. Eight algorithms have been used: SORIGA (an Evolutionary Algorithm), an agents-based algorithm, the mQSO (a widely used multi-population PSO) as well as three heuristic-rule-based variations of it, and two trajectory-based cooperative strategies. The algorithms have been tested on the Moving Peaks Benchmark and the dynamic version of the Ackley, Griewank and Rastrigin functions. For each problem, a wide variety of configuration variations have been used, emphasizing the influence of dynamism, and using a full-factorial experimental design. The results give an interesting overview of the properties of the algorithms and their applicability, and provide useful hints to face new problems of this type with the best algorithmic approach. Additionally, a recently introduced methodology for comparing a high number of experimental results in a graphical way is used.  相似文献   

16.
The estimation of state variables of dynamic systems in noisy environments has been an active research field in recent decades. In this way, Kalman filtering approach may not be robust in the presence of modeling uncertainties. So, several methods have been proposed to design robust estimators for the systems with uncertain parameters. In this paper, an optimized filter is proposed for this problem considering an uncertain discrete-time linear system. After converting the subject to an optimization problem, three algorithms are used for optimizing the state estimator parameters: particle swarm optimization (PSO) algorithm, modified genetic algorithm (MGA) and learning automata (LA). Experimental results show that, in comparison with the standard Kalman filter and some related researches, using the proposed optimization methods results in robust performance in the presence of uncertainties. However, MGA-based estimation method shows better performance in the range of uncertain parameter than other optimization methods.  相似文献   

17.
LADPSO: using fuzzy logic to conduct PSO algorithm   总被引:5,自引:5,他引:0  
Optimization plays a critical role in human modern life. Nowadays, optimization is used in many aspects of human modern life including engineering, medicine, agriculture and economy. Due to the growing number of optimization problems and their growing complexity, we need to improve and develop theoretical and practical optimization methods. Stochastic population based optimization algorithms like genetic algorithms and particle swarm optimization are good candidates for solving complex problems efficiently. Particle swarm optimization (PSO) is an optimization algorithm that has received much attention in recent years. PSO is a simple and computationally inexpensive algorithm inspired by the social behavior of bird flocks and fish schools. However, PSO suffers from premature convergence, especially in high dimensional multi-modal functions. In this paper, a new method for improving PSO has been introduced. The Proposed method which has been named Light Adaptive Particle Swarm Optimization is a novel method that uses a fuzzy control system to conduct the standard algorithm. The suggested method uses two adjunct operators along with the fuzzy system in order to improve the base algorithm on global optimization problems. Our approach is validated using a number of common complex uni-modal/multi-modal benchmark functions and results have been compared with the results of Standard PSO (SPSO2011) and some other methods. The simulation results demonstrate that results of the proposed approach is promising for improving the standard PSO algorithm on global optimization problems and also improving performance of the algorithm.  相似文献   

18.
In this paper, the algorithmic concepts of the Cuckoo-search (CK), Particle swarm optimization (PSO), Differential evolution (DE) and Artificial bee colony (ABC) algorithms have been analyzed. The numerical optimization problem solving successes of the mentioned algorithms have also been compared statistically by testing over 50 different benchmark functions. Empirical results reveal that the problem solving success of the CK algorithm is very close to the DE algorithm. The run-time complexity and the required function-evaluation number for acquiring global minimizer by the DE algorithm is generally smaller than the comparison algorithms. The performances of the CK and PSO algorithms are statistically closer to the performance of the DE algorithm than the ABC algorithm. The CK and DE algorithms supply more robust and precise results than the PSO and ABC algorithms.  相似文献   

19.
Particle swarm optimization algorithm is a inhabitant-based stochastic search procedure, which provides a populace-based search practice for getting the best solution from the problem by taking particles and moving them around in the search space and efficient for global search. Grey Wolf Optimizer is a recently developed meta-heuristic search algorithm inspired by Canis-lupus. This research paper presents solution to single-area unit commitment problem for 14-bus system, 30-bus system and 10-generating unit model using swarm-intelligence-based particle swarm optimization algorithm and a hybrid PSO–GWO algorithm. The effectiveness of proposed algorithms is compared with classical PSO, PSOLR, HPSO, hybrid PSOSQP, MPSO, IBPSO, LCA–PSO and various other evolutionary algorithms, and it is found that performance of NPSO is faster than classical PSO. However, generation cost of hybrid PSO–GWO is better than classical and novel PSO, but convergence of hybrid PSO–GWO is much slower than NPSO due to sequential computation of PSO and GWO.  相似文献   

20.
改进粒子群优化算法求解任务指派问题   总被引:2,自引:0,他引:2  
谈文芳  赵强  余胜阳  肖人彬 《计算机应用》2007,27(12):2892-2895
任务指派问题是典型NP难题,引入粒子群优化算法对其进行求解。建立了任务指派问题的数学模型,给出了粒子群优化算法求解任务指派问题的具体方案。为提高其优化求解效果,引入变异机制及局部更新机制对粒子群优化算法进行改进。实例及数字仿真验证了改进粒子群优化算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号