首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
三明治型电磁屏蔽材料的制备与性能   总被引:12,自引:0,他引:12  
根据Schelkunoff的多层电磁屏蔽理论,分析了双层和3层屏蔽材料的综合屏蔽特征,提出了一种简单有效的三明治型夹层结构材料设计方案,制备出金属箔、涂料两种三明治型层状电磁屏蔽材料,通过理论计算、样品的综合屏蔽性能测试和SEM微观组织观察,讨论了三明治型材料设计方案的正确性与材料的性能。结果表明,三明治型电磁屏蔽材料的屏蔽效能增量(△SE)随电磁波频率的增加而增大,可以实现结构优化;金属箔三明治型电磁屏蔽材料的屏蔽效能增量与理论计算结果相符合;涂料三明治型电磁屏蔽材料的SE值比普通型高,当入射电磁波的频率为1GHz时,三明治型比普通型高18dB。  相似文献   

2.
合成纤维复合夹层屏蔽结构改性及其电磁特性研究   总被引:4,自引:1,他引:3       下载免费PDF全文
提出具有复合介质夹层屏蔽结构模型的设想,利用铜箔-聚四氟乙烯为原材料,设计了单层屏蔽结构与复合夹层屏蔽结构的对比实验,测试了复合夹层屏蔽结构的电磁屏蔽效能增量,并用Ватолцн多层电磁屏蔽理论公式进行了验证。具有复合夹层屏蔽结构材料的电磁屏蔽效能明显优于单层屏蔽结构材料的电磁屏蔽效能。继而以涤纶无纺布、锦纶合成纤维为研究对象,采用电化学改性的方法,制备了具有复合夹层屏蔽结构的柔性电磁屏蔽材料。结果表明,通过对研究对象的选择和优化电化学改性的工艺,可以制备出1 MHz~1000 MHz入射电磁波频段范围内,满足不同要求的合成纤维复合夹层屏蔽结构改性材料,其SE值最高可达98 dB。  相似文献   

3.
针对300KHz-1.5GHz频段电磁波屏蔽材料的要求,在大量研究电磁波屏蔽机理以及各个频段屏蔽效能影响因素的基础上,从微合金化多元复台的新思路出发,建立了单层宽频镍基电磁波屏蔽复合材料结构设计物理模塑.经测试,所制备的复合辅助填科/镍/丙烯酸树脂复合材料涂层厚度为02-0.4mm,在300KHz-1.5GHz须段屏蔽嫂能可达47-68dB,较镍/丙烯酸树脂复合材料涂层屏蔽效能提高了21-31%,达到了国军标GJB2604-96标准  相似文献   

4.
建立了填充椭球颗粒电磁屏蔽复合材料等效电磁参数的物理模型,基于变分原理和电磁波传输理论推导出其电磁屏蔽性能的预测公式,计算了不同填充条件下复合材料的屏蔽效能及反射率,分析了填料显微结构特征(浓度、形状、尺寸、分布方式)对复合材料屏蔽性能的影响规律.结果表明,复合材料屏蔽效能和反射率随填料填充浓度、长径比的增加而增大;针形和片形填料优于球形填料且定向分布好于随机分布;材料的反射率在特定的填充浓度及填料尺寸下存在峰值。屏蔽效能的计算结果与实验上填充球形银包羰基铁和镀镍短碳纤维的屏蔽复合材料的测试数据拟合较好。  相似文献   

5.
通过对多层碳纤维毡(CFF)/环氧树脂(EP)复合材料的厚度、碳毡含量以及碳黑填充的设计,制备了多种多层结构碳纤维毡复合材料,研究了多层碳纤维毡复合材料的屏蔽性能。结果表明:随着厚度的增加,多层结构复合材料的屏蔽效能呈增高趋势;随碳毡含量的升高,多层结构复合材料的单位厚度屏蔽效能逐渐增高;碳黑(CB)的添加能进一步提升材料的屏蔽效能,碳黑填充位置的不同对多层结构复合材料的屏蔽效能影响较大;在4.00 GHz时,CFF-CB-GFF结构的屏蔽效能可达到约71 dB,可作为优良的结构功能一体化屏蔽材料。  相似文献   

6.
不同金属填料对电磁屏蔽涂料屏蔽效能的影响   总被引:5,自引:0,他引:5  
复合电磁屏蔽材料是一类用于防护电磁波干扰的新型功能材料,作为屏蔽组分主体的金属填料的电磁特性及其在涂料中的分布状态对于材料的屏蔽效能具有显著的影响,同时由于复合材料的结构特点使这类复合电磁屏蔽材料的屏蔽效能与传统金属板材的屏蔽效能计算理论有着较大的差异.在实验研究的基础上讨论了几种典型的金属粉末填料构成的复合电磁屏蔽材料的屏蔽效能的特点,并分析了其与传统屏蔽效能计算理论的差异和形成的原因,为设计高效复合电磁屏蔽材料提供必要的参考.  相似文献   

7.
通过传输线模型推导出多层无限大平板的屏蔽效能的计算公式,并根据公式设计了双层屏蔽层,通过多靶直流溅射制备了多种金属屏蔽膜.研究结果表明衰减损耗是各层屏蔽效果线性相加的结果,反射损耗与各层相对位置关系无关,层数多或各屏蔽层的反射越大,则屏蔽效果越好.采用Cu/1Cr18Ni9Ti的金属屏蔽层结构,可获得良好的屏蔽效能及耐候性,单纯用表面阻抗来评估多层金属膜的电磁屏蔽效果并不合适.  相似文献   

8.
牛帅  李琳 《中国科技博览》2013,(26):592-592
对平板型复合材料屏蔽效能的测量概括起来可以分为两大类:“近场法”和“远场法”、“近场法”主要用来测量材料对电磁波近场(磁场为主)的屏蔽效能,“远场法”主要用来测量材料对电磁波远场平面波的屏蔽效能。本文对上述两类方法的原理,适用范围等作了详细阐述。  相似文献   

9.
金属纤维混纺织物由于具有较好的电磁屏蔽性能得到了广泛应用,但其屏蔽效能受纺织工艺等诸多因素影响,难以建立精确的计算模型。在分析介质平板屏蔽体屏蔽效能的基础上提出等效算法,将金属纤维混纺织物等效为均匀介质平板,以计算多层织物材料的电磁屏蔽效能。通过测试单、双层金属纤维混纺织物的电磁屏蔽效能,验证了等效方法的正确性和可行性,可用于指导复合材料的设计。  相似文献   

10.
CFRP复合材料具有优异的力学性能,在航空航天装备中有广泛应用,但是因其单层铺层内部的结构各向异性,单向纤维铺层对于垂直极化波的电磁屏蔽效能较弱。为应对日益复杂的电磁环境,保护电子元器件不受干扰,增强复合材料的电磁屏蔽效能显得尤为重要,本工作利用非连续Al颗粒在层间面内紧密排列,构建了一种层间面内含连续Al屏蔽层的CFRP复合材料,并研究了不同Al颗粒含量对复合材料电磁屏蔽效能和力学性能的影响规律。结果表明,随着Al颗粒含量的增加,CFRP复合材料的导电性和电磁屏蔽效能也随之增加,当聚合物中Al颗粒质量分数达到33.3%时,复合材料的面内电导率提高了3个数量级,在垂直于纤维方向上对频率为3~17 GHz的电磁波的电磁屏蔽效能提高了10 dB以上。随着Al颗粒含量的增加,复合材料层间剪切强度与弯曲强度出现先上升后下降的变化规律,当树脂中Al质量分数为33.3%时,复合材料的层间剪切性能提高了5.2%达到80.5 MPa,当树脂中Al质量分数为50%时,复合材料的弯曲强度提高了20%至1441.0 MPa,弯曲模量提高了10.2%达到101.83 GPa。由此可见,Al颗粒夹层CFRP复合材料可以实现力学性能和电磁屏蔽效能的同步提升,是一种具有广泛应用前景的结构-电磁屏蔽一体化复合材料。  相似文献   

11.
李建雄  贾红玉  陈纯锴  赵晓明 《材料导报》2018,32(18):3235-3238, 3248
为实现电磁织物的屏蔽效能理论预测及其优化设计,本研究对电磁屏蔽织物构建了三维模型,采用CST (Computer simulation technology)微波工作室模拟各向异性织物与电磁波相互作用的机理。计算了在1~18GHz波段内,电磁波入射角和方位角对屏蔽效能的影响。结果表明:x轴和y轴方向介电常数对织物屏蔽效能的影响较为显著,且在各向异性介电常数较小时,屏蔽效能随电磁波入射角的增加呈现先增大后减小的趋势;而当电磁波方位角发生变化时,不同电磁波入射角对其产生的屏蔽效能影响规律不同。本研究结果对各向异性织物具有较好的适用性,为开发高性能电磁屏蔽织物提供理论依据。  相似文献   

12.
曲宝龙  李旭东  李俊琛 《功能材料》2012,43(17):2408-2411
为建立复合材料宏细观尺度之间电磁响应的关联性,将分层多尺度计算方法应用于纤维复合材料电磁屏蔽效能计算。为准确描述复合材料宏细观之间的联系,以电磁屏蔽效能为衡量标准,确定了复合材料细观结构的代表性体积单元(RVE)。根据电磁场媒质本构方程计算了RVE的等效电磁参数。采用分层多尺度方法计算复合材料宏观构件的电磁屏蔽效能。结果表明工作频率越高则复合材料的RVE越小;所设计的纤维复合材料结构在工作频率2~18GHz范围内具有38dB以上的电磁屏蔽效能,且电磁屏蔽效能随工作频率增加而下降。研究方法适用于求解细观结构相分散均匀或分布有规律的任意形状复合材料宏观构件电磁屏蔽效能。  相似文献   

13.
通过熔融共混、流延成膜法制备了多壁碳纳米管/聚乙烯醇(MWCNTs/PVA)复合材料,并研究了碳纤维作为增强体的作用。扫描电子显微镜、傅里叶变换红外光谱、热重分析表明:MWCNTs在PVA基体中均匀分散且形成了良好的空间导电网络;MWCNTs的加入会使吸收峰转移并与PVA发生键合反应;MWCNTs/PVA复合材料具有优异的热稳定性,热分解温度低于105℃时只有少量水分蒸发。导电性和电磁屏蔽测试表明,MWCNTs/PVA复合材料电磁屏蔽性能随其导电性的增强而提高,MWCNTs质量分数为1.2%的复合材料样品,在干扰电磁波频率为1~18GHz频段上具有良好的屏蔽性能,当干扰电磁波频率为13.3GHz时,其屏蔽效能为36.7dB。碳纤维可以增强MWCNTs/PVA复合材料的屏蔽性能,MWCNTs质量分数为0.6%的碳纤维增强MWCNTs/PVA复合材料样品,在干扰电磁波频率为1~18GHz频段时,其电磁屏蔽效能大于40dB。  相似文献   

14.
采用一种导电材料预制体-单壁碳纳米管(Single-wall carbon nanotube,SWCNT)无纺布与环氧树脂复合制备了电磁屏蔽复合材料,并对所制复合材料的电磁屏蔽性能进行了表征。结果表明:所制复合材料对电磁波的屏蔽效率随SWCNT无纺布厚度的增加而增加。在较低的SWCNT无纺布填加量下所制复合材料可以实现对低频电磁波较高的屏蔽效率。不同于填加粉体导电材料所制电磁屏蔽复合材料,作为导电材料预制体使用的SWCNT无纺布是一个独立的整体导电薄膜,可以直接引入到基体当中,不存在分散问题。并且通过简单的导电预制体多层叠加的方式即可实现复合材料更高的屏蔽效率。  相似文献   

15.
铁镍合金对复合电磁屏蔽材料性能的影响   总被引:1,自引:0,他引:1  
朱国辉  左遥远 《功能材料》2013,44(12):1686-1689
在导电组分中添加磁性合金粉末,利用复合效应增加电磁屏蔽材料的吸收损耗,以获得较好的屏蔽效能。通过在12%体积分数的金属镍粉中添加不同体积分数的FeNi合金,研究了复合材料中FeNi合金对电磁屏蔽效能的影响。实验结果表明,当加入4%体积分数的FeNi合金时,屏蔽效能最好。分析得出FeNi合金粉末的加入能够增加材料的磁导率,增加材料对电磁波的吸收,在提升屏蔽效能的同时达到低二次污染的目的。  相似文献   

16.
研究了镀铜/镍的聚丙烯腈纤维填充ABS树脂制得的复合材料的导电性及电磁波屏蔽性能,复合材料的导电性主要与导电纤维的填加量有关,导电纤维与基体树脂间的相容状况、复合加工时某些工艺条件等对复合材料的导电性也有较大的影响,电磁波屏蔽性能随导电纤维填加量的增加而提高,加入适当的偶联剂有助于改善和复合材料的电磁波屏蔽性能。  相似文献   

17.
膨胀石墨/金属网/ABS复合材料电磁屏蔽性能的研究   总被引:1,自引:0,他引:1  
杨玉山  董发勤  郑凯 《功能材料》2013,44(7):966-969
以膨胀石墨(EG)和金属网(MN)作为电磁屏蔽基元材料与ABS树脂采用共混、挤出、热压等成型工艺制备了电磁屏蔽复合材料,研究了膨胀石墨的含量、处理方式、复合材料的厚度和金属网的目数对电磁屏蔽复合材料屏蔽性能的影响。结果表明,在膨胀石墨/ABS电磁屏蔽复合材料中,其电磁屏蔽效能随着膨胀石墨含量增加及复合材料厚度增加而增大,膨胀石墨经超声处理后,可以提高复合材料的屏蔽效能。在两种单层金属网/ABS电磁屏蔽夹层复合材料中,屏蔽效能并不随着金属网目数增加而增大。在30MHz~1.8GHz频率范围内,200目不锈钢网/ABS复合材料和100目铜网/ABS复合材料的屏蔽性能最好,最大屏蔽效能分别为76.1和70dB。在多相电磁屏蔽复合材料中,膨胀石墨/不锈钢网/ABS复合材料的屏蔽效能比不锈钢网/ABS复合材料高约5dB。  相似文献   

18.
为增强材料对电磁波的屏蔽性能,同时降低电磁波二次反射带来的危害。基于电-磁损耗协同作用机理,将机械球磨与二氧化硅(SiO2)包覆双重改性的磁损耗材料羰基铁粉(CIP)与镀银织物复合,制备了结合吸收层和反射层的复合型电磁屏蔽织物。利用微观成像仪、X射线衍射仪、傅里叶红外光谱仪对改性CIP进行了物相表征,并通过同轴法和波导法对改性CIP以及复合织物的电磁参数与屏蔽效能进行了测试与分析。结果表明:双重改性后的羰基铁粉电磁波吸收损耗频带宽度增加且最佳反射损耗为-62.7dB;当涂层与基材整体厚度为3mm时,复合材料对电磁波的反射率(R)由0.96降至0.2,吸收率(A)由0.03增至0.82,实现了以吸收为主的屏蔽效果。  相似文献   

19.
信息技术的迅速发展和电子设备的大量使用,在环境中产生了如电子噪声、电磁波(EM)、电磁干扰(EMI)、射频干扰等电子污染。综述了EMI屏蔽微纳米材料相关方面的研究进展,简要分析了EMI屏蔽的基本机理和比较了纳米EMI屏蔽复合材料的制备方法,同时对比了金属和碳纳米填料EMI屏蔽复合材料,得到金属纳米EMI屏蔽复合材料,虽具有良好效果,但是存在质量大、成本高和耐腐蚀性弱等缺点。因碳系纳米材料具有质量轻,耐腐蚀性,优异的电学、电介质、热学、机械和磁性等独特特性,可替代金属作为EMI屏蔽填料,且EMI屏蔽效果优良。如多层纳米管(MWCNT)和石墨烯/聚苯胺(GN/PANI)纳米复合材料,并且两者材料的混杂可以协同改善复合材料的屏蔽效果。  相似文献   

20.
用三维五向3D编织技术和模压成型工艺制备了碳纤维增强环氧树脂基电磁屏蔽复合材料,测试结果表明,三维五向编织结构可形成良好的导电网络,基于该结构制成的碳纤维复合材料屏蔽效能最高可达85dB,编织体整体化学镀镍可使材料的屏蔽效能提高约15dB,镀镍后的复合材料在14kHz~18GHz频段内具有较高的屏蔽效能,最高可达95dB。同时发现,该材料的屏蔽性能显示各向异性,这与编织体的纤维取向和电磁波的极化方向有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号