首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper studies finite‐time stabilization problem for stochastic low‐order nonlinear systems with stochastic inverse dynamics. By characterizing unmeasured stochastic inverse dynamics with finite‐time stochastic input‐to‐state stability, combining the Lyapunov function and adding a power integrator technique, and using the stochastic finite‐time stability theory, a state feedback controller is designed to guarantee global finite‐time stability in probability of stochastic low‐order nonlinear systems with finite‐time stochastic input‐to‐state stability inverse dynamics.  相似文献   

2.
This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.  相似文献   

3.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme.  相似文献   

4.
This paper investigates the global finite‐time stabilization for a class of high‐order switched nonlinear systems via the sampled‐data output feedback control. Firstly, we design a continuous‐time output feedback controller for the nominal part via adding a power integrator technique. Based on the homogeneous theory, together with the Gronwall‐Bellman inequality, a sampled‐data output feedback controller is designed with suitable sampling periods to ensure that the closed‐loop system can be globally stabilized in finite time. In the meantime, the proposed control method can be extended to the switched nonlinear systems with an upper‐triangular growth condition. Finally, two examples are presented to illustrate the validity of the proposed control scheme.  相似文献   

5.
针对一类状态时滞奇异系统,研究状态反馈控制器的设计问题。基于Lyapunov稳定性理论和线性矩阵不等式(LMI)工具,当时滞常数精确已知时,设计带有记忆的状态反馈控制器,使得相应的闭环系统渐近稳定;当时滞常数不能精确已知时,通过求解相应的线性矩阵不等式,得到满足设计要求的对时滞参数的自适应控制器,使得时滞系统镇定。最后,仿真实例表明此方法的有效性。  相似文献   

6.
In this article, the state and mode feedback control strategy is investigated for the discrete‐time Markovian jump linear system (MJLS) with time‐varying controllable mode transition probability matrix (MTPM). This strategy, consisting of a state feedback controller and a mode feedback controller, is proposed to ensure MJLS's stability and meanwhile improve system performance. First, a mode‐dependent state feedback controller is designed to stabilize the MJLS based on the time‐invariant part of the MTPM such that it can still keep valid even if the MTPM is adjusted by the mode feedback control. Second, a generalized quadratic stabilization cost is put forward for evaluating MJLS's performance, which contains system state, state feedback controller, and mode feedback controller. To reduce the stabilization cost, a mode feedback controller is introduced to adjust each mode's occurrence probability by changing the time‐varying controllable part of MTPM. The calculation of such mode feedback controller is given based on a value‐iteration algorithm with its convergence proof. Compared with traditional state feedback control strategy, this state and mode feedback control strategy offers a new perspective for the control problem of general nonhomogeneous MJLSs. Numerical examples are provided to illustrate the validity of the proposed strategy.  相似文献   

7.
This paper addresses the problem of global state feedback stabilization for a class of inherently higher‐order parameterized nonlinear systems subject to time delay. By using the homogeneous domination approach, we construct a homogeneous state feedback controller with an adaptive strategy. A constructive design method is developed based an effective coupling of the inductive method and a sign function, leading to adaptive regulators with minimal parameterization. With the aid of a homogeneous Lyapunov‐Krasovskii functional, the closed‐loop systems can be asymptotically stabilized globally.  相似文献   

8.
This paper addresses the global stabilization via adaptive output‐feedback for a class of uncertain nonlinear systems. Remarkably, the systems under investigation are with multiple uncertainties: unknown control directions, unknown growth rates and unknown input bias, and can be used to describe more physical plants. Multiple uncertainties, which usually cannot be compensated by a sole compensation technique, may give rise to big technical difficulty for controller design. To overcome such difficulty and to achieve the global stabilization, a new adaptive output‐feedback scheme is proposed in this paper, by flexibly combining Nussbaum‐type function, tuning function technique and extended state observer. It is shown that, under the designed controller, the system states globally converge to zero. A simulation example on non‐zero set‐point regulation is given to demonstrate the effectiveness of the theoretical results.  相似文献   

9.
This paper investigates the problem of adaptive state feedback stabilization for a class of stochastic nonlinearly parameterized nonholonomic systems in chained form with unknown control coefficients. By defining two new unknown parameters whose dynamic updating laws are properly chosen and also by skilfully using the parameter separation, input‐state‐scaling, and integrator backstepping techniques, an adaptive state feedback controller is successfully designed, which guarantees that the closed‐loop system is asymptotically stabilized in probability. A simulation example is provided to illustrate the effectiveness of the proposed approach.  相似文献   

10.
This paper focuses on the adaptive stabilization problem for a class of high‐order nonlinear systems with time‐varying uncertainties and unknown time‐delays. Time‐varying uncertain parameters are compensated by combining a function gain with traditional adaptive technique, and unknown multiple time‐delays are manipulated by the delicate choice of an appropriate Lyapunov function. With the help of homogeneous domination idea and recursive design, a continuous adaptive state‐feedback controller is designed to guarantee that resulting closed‐loop systems are globally uniformly stable and original system states converge to zero. The effectiveness of the proposed control scheme is illustrated by the stabilization of delayed neural network systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with the problem of finite‐time stabilization for some nonlinear stochastic systems. Based on the stochastic Lyapunov theorem on finite‐time stability that has been established by the authors in the paper, it is proven that Euler‐type stochastic nonlinear systems can be finite‐time stabilized via a family of continuous feedback controllers. Using the technique of adding a power integrator, a continuous, global state feedback controller is constructed to stabilize in finite time a large class of two‐dimensional lower‐triangular stochastic nonlinear systems. Also, for a class of three‐dimensional lower‐triangular stochastic nonlinear systems, a recursive design scheme of finite‐time stabilization is given by developing the technique of adding a power integrator and constructing a continuous feedback controller. Finally, a simulation example is given to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the problem of state feedback stabilization for a class of stochastic time‐varying delay nonlinear systems which are neither necessarily feedback linearizable nor affine in the control input. Based on the backstepping design method and the adding of a power integrator technique, a state feedback controller is constructed to ensure the origin of closed‐loop system is globally asymptotically stable in probability. The main design difficulty is how to deal with the different power orders, time‐varying delay and the nonsmooth system perturbations. The efficiency of the state feedback controller is demonstrated by a simulation example.  相似文献   

13.
This paper studies the issues of adaptive passification and global stabilization for a class of switched nonlinearly parameterized systems. Each subsystem is allowed to be non‐feedback passive. Firstly, a passivity concept for switched nonlinear systems is proposed. In particular, the change of storage functions of an inactive subsystem is described. An adaptively feedback passive switched nonlinear system is shown to be stabilized under the partly asymptotic zero‐state detectability assumption. Secondly, the adaptive feedback controller for each subsystem and a state‐dependent switching law are designed to render the resulting closed‐loop system passive. Finally, a new switched adaptive control technique is developed to solve the adaptive stabilization problem by exploiting the recursive feedback passification design technique and parameter separation technique when all subsystems have any same relative degree. The simulation results on adaptive stabilization of continuously stirred tank reactor system show effectiveness of the proposed design method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper gives a first try to the finite‐time control for nonlinear systems with unknown parametric uncertainty and external disturbances. The serious uncertainties generated by unknown parameters are compensated by skillfully using an adaptive control technique. Exact knowledge of the upper bounds of the disturbances is removed by employing a disturbance observer–based control method. Then, based on the disturbance observer–based control, backstepping technique, finite‐time adaptive control, and Lyapunov stability theory, a composite adaptive state‐feedback controller is strictly designed and analyzed, which guarantees the closed‐loop system to be practically finite‐time stable. Finally, both the practical and numerical examples are presented and compared to demonstrate the effectiveness of the proposed scheme.  相似文献   

15.
This paper considers the global finite‐time output‐feedback stabilization for a class of uncertain nonlinear systems. Comparing with the existing related literature, two essential obstacles exist: On the one hand, the systems in question allow serious parametric unknowns and serious time variations coupling to the unmeasurable states, which is reflected in that the systems have the unmeasurable states dependent growth with the rate being an unknown constant multiplying a known continuous function of time. On the other hand, the systems possess remarkably inherent nonlinearities, whose growth allows to be not only low‐order but especially high‐order with respect to the unmeasurable states. To effectively cope with these obstacles, we established a time‐varying output‐feedback strategy to achieve the finite‐time stabilization for the systems under investigation. First, a time‐varying state‐feedback controller is constructed by adding an integrator method, and by homogeneous domination approach, a time‐varying reduced‐order observer is designed to precisely rebuild the unmeasurable states. Then, by certainty equivalence principle, a desired time‐varying output‐feedback controller is constructed for the systems. It is shown that, as long as the involved time‐varying gain is chosen fast enough to overtake the serious parametric unknowns and the serious time variations, the output‐feedback controller renders that the closed‐loop system states converge to zero in finite time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The Razumikhin‐type approach is introduced to solve the state feedback stabilization problem for a class of stochastic high‐order nonlinear systems with time‐varying delay. Based on the general Razumikhin‐type theorem on stochastic systems established in our paper and backstepping design method, a state feedback controller is constructed to ensure the origin of closed‐loop system is globally asymptotically stable in probability. Our methodology enables us to completely remove the limitations on the derivative of delay, which is the common assumption of stochastic high‐order nonlinear systems with time‐varying delay. The efficiency of the state feedback controller is demonstrated by simulation examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
王国良  秦奋 《控制与决策》2016,31(7):1265-1271

针对Markov 系统矩阵参数未知的实际情况, 提出一种基于状态反馈控制与自适应控制相结合的控制方法. 基于线性矩阵不等式技术给出相应控制器参数的求解条件. 与现有大多数自适应控制方法相比, 所提方法不仅使估计误差几乎处处有界, 而且原系统的系统状态几乎处处渐近稳定, 具有较好的收敛特性. 在所得结果的基础上, 进一步讨论了转移速率部分未知时的相关控制问题. 数值算例验证了所提出的设计方法的有效性.

  相似文献   

18.
In this paper, we investigate the adaptive state‐feedback stabilization problem for a class of nonlinear systems subject to parametric uncertainties, time‐varying delay, and Markovian jumping actuator failures. First, some fundamental results, including the infinitesimal generator and conditions for the existence and uniqueness of the solution, are established for nonlinear systems w.r.t. Markovian vector and time‐varying delay. Subsequently, corresponding stability criterion is generalized to the considered systems. By employing the backstepping method and the tuning function technique, a systematic adaptive fault‐tolerant control scheme is proposed, which guarantees the boundedness in probability of all the closed‐loop signals. It is noted that no fault detection and diagnostic block are needed, and the control law can be adapted automatically by taking account of the innovative state information. The efficiency of the designed controller is demonstrated by an illustrative example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we focus on the problem of adaptive stabilization for a class of uncertain switched nonlinear systems, whose non-switching part consists of feedback linearizable dynamics. The main result is that we propose adaptive controllers such that the considered switched systems with unknown parameters can be stabilized under arbitrary switching signals. First, we design the adaptive state feedback controller based on tuning the estimations of the bounds on switching parameters in the transformed system, instead of estimating the switching parameters directly. Next, by incorporating some augmented design parameters, the adaptive output feedback controller is designed. The proposed approach allows us to construct a common Lyapunov function and thus the closed-loop system can be stabilized without the restriction on dwell-time, which is needed in most of the existing results considering output feedback control. A numerical example and computer simulations are provided to validate the proposed controllers.  相似文献   

20.
Robust finite‐time stability and stabilization problems for a class of linear uncertain time‐delay systems are studied. The concept of finite‐time stability is extended to linear uncertain time‐delay systems. Based on the Lyapunov method and properties of matrix inequalities, a sufficient condition that ensures finite‐time stability of linear uncertain time‐delay systems is given. By virtue of the results on finite‐time stability, a memoryless state feedback controller that guarantees that the closed‐loop system is finite time stable, is proposed. The controller design problem is solved by using the linear matrix inequalities and the cone complementarity linearization iterative algorithm. Numerical examples verify the efficiency of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号