首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-3500热模拟试验机对AZ31镁合金及添加0.2%(质量分数)Ca的AZ31(AZ31-0.2Ca)镁合金在变形温度为300~500℃、应变速率为0.001~1 s~(-1)范围内进行等温热压缩实验。基于流变应力曲线,结合双曲正弦函数建立的本构方程与动态材料模型(DMM)构建的加工图,系统地分析了Ca元素对AZ31镁合金热变形行为的影响。结果表明,与AZ31镁合金相比,AZ31-0.2Ca镁合金在较低温度和较高应变速率下的流变应力水平得到提高,应力指数n值有所减小,但热变形激活能Q值变化不大。此外,添加Ca元素能够扩大AZ31镁合金的可加工区域。AZ31-0.2Ca镁合金的最优加工区域为:温度400~490℃、应变速率0.001~0.01 s~(-1)和温度420~480℃、应变速率0.2~1 s~(-1)。  相似文献   

2.
基于尺寸效应的镁合金箔材本构关系的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
目的探究AZ31镁合金微拉伸过程中存在的尺寸效应,提出适用于镁合金微拉伸的本构模型。方法以AZ31镁合金箔材为试验材料,分别针对不同厚度和不同晶粒大小的试样进行微拉伸试验。结果试样在单向拉伸时存在明显的尺寸效应,在实验数据的基础上对Swift模型进行修正,得到了适用于镁合金微拉伸过程的本构方程。结论用表面层模型解释了不同厚度的试样,在微拉伸试验时出现的尺寸效应现象,用细晶强化理论解释了不同晶粒尺寸的试样,在微拉伸试验时出现的尺寸效应现象;修正后的本构模型与试验数据吻合较好。  相似文献   

3.
目的研究镁合金热变形行为,建立真实应力与应变、温度及应变速率间的构效关系,以表征多类镁合金的热变形过程。方法基于Gleeble-1500热模拟实验,定性、定量化分析镁合金热变形的温度敏感性,结合变形曲线的唯象特征,优化并重构Fields-Backofen本构方程以表征镁合金的热变形行为。结果镁合金热变形过程中,应力关于温度的软化作用可被描述为以e为底的指数函数形式;采用F-B方程表征镁合金热变形行为时,需考虑温度软化作用对该方程进行特定优化;优化后的F-B模型,其形式上为分段式函数,该函数所预测的变形曲线在峰值处存在尖点现象且预测误差较大;利用"离散变形微阶段求解——全阶段整合"的方法,将应变变量植入到应变速率及温度敏感系数,对F-B模型进行重构,可有效解决尖点问题,提高对变形曲线的预测精度。结论重构后的F-B模型可准确表征AZ31B镁合金的塑性流变行为,并适用于AZ91,AZ80及ZK60等具有与研究合金相似变形特性的镁合金。  相似文献   

4.
在应变速率为0.005~1 s~(-1)、温度200~275℃条件下,利用Instron-5500热模拟机,对经过等通道角挤压(Equal Channel Angular Extrusion,ECAE)后的AZ91D镁合金的高温压缩特性进行了研究,得到了ECAE-ed态AZ91D镁合金真实应力-应变曲线,分析了挤压温度、应变速率等对其的影响,得出本构方程的一系列常量,建立了ECAE-ed态AZ91D镁合金在高温压缩中的本构方程关系式,并与铸态AZ91D镁合金进行了对比。结果表明:热压缩过程中,ECAE-ed态AZ91D镁合金与铸态一样,流动应力随温度的升高而降低,随应变速率的升高而升高;流动应力也可以用双曲正弦函数来描述,且双曲正弦值随Zener-Hollomon参数的自然对数的升高呈线性升高;两者同为正应变速率敏感材料,但ECAE-ed态AZ91D镁合金要比铸态应变速率敏感性小,其指数从铸态的m=0.14下降为0.096,变形激活能从182.65 kJ/mol上升为227.14 kJ/mol。研究结果对AZ91D镁合金进一步塑性成形和应用具有指导意义。  相似文献   

5.
对不同变形量的冷锻AZ31镁合金在不同温度和保温时间下进行退火.通过对其组织的研究和静态再结晶动力学的分析,结果表明:可以用JMAK方程对其静态再结晶体积分数和退火时间的关系进行描述.由实验数据计算得到冷锻AZ31镁合金再结晶激活能为53.5kJ/mol左右,同时得到各温度下的再结晶完成时间,可为冷锻AZ31镁合金退火工艺的制定提供一定参考.  相似文献   

6.
铸态AZ80A 镁合金热加工图及高温变形行为研究   总被引:2,自引:2,他引:0       下载免费PDF全文
目的采用Instron5500R热模拟试验机,研究铸态AZ80A镁合金在变形温度为270~410℃、应变速率为0.001~0.5 s-1条件下的热加工图及高温变形行为。方法利用双曲正弦本构函数模型描述了铸态AZ80A镁合金的高温变形行为,计算获得了该合金的变形激活能,构建了应变量为0.3和0.6时的热加工图。结果得到了合金热变形本构模型及加工图,变形激活能为203.5k J/mol,确定了应变为0.3和0.6时的动态回复区域为与动态再结晶区域。结论铸态AZ80A镁合金在330~380℃,0.001~0.01 s-1时发生了动态结晶,这是该合金最佳的热加工工艺参数范围。  相似文献   

7.
为了在挤压生产中获取均匀的镁合金变形组织,需要掌握合金含量及均匀化退火对热挤压组织的影响规律.本实验通过在Gleeble-1500D热模拟实验机上对不同Al含量的AZ10,AZ31,AZ61和AZ91镁合金进行热模拟挤压,结果表明,经过400℃/12h均匀化退火,AZ10和AZ31合金均形成单一的α固溶体,AZ61合金...  相似文献   

8.
权国政  赵磊  王阳  石彧  周杰 《功能材料》2011,42(6):1142-1146
热物理模拟获得了铸态AZ80镁合金热压缩真应力-应变曲线,以此作为计算动态再结晶体积分数演变的底层数据.通过求解流动应力的双曲正弦表征模型,获得了本构模型与动态再结晶激活能等重要参数.分析峰值应力出现之前与之后的硬化曲线,识别了真应力-应变曲线所隐含的关键应变点:临界应变,峰值应变及最大软化速率应变.进一步引入表征晶体...  相似文献   

9.
采用Gleeble-3500热模拟试验机对挤压态AZ40合金进行热压缩实验,分析压缩后不同温度真应力-应变曲线的变化趋势,得到流变应力受变形温度和应变速率等因素的影响规律;在双曲正弦关系的基础上构造挤压态AZ40合金的本构方程,在动态材料模型(DMM)基础上建立挤压态AZ40合金的热加工图,从而确定挤压态AZ40镁合金的热变形加工范围.结果表明:明显的动态再结晶是挤压态AZ40镁合金流变曲线的特点,在压缩过程中,随变形温度的升高,挤压态AZ40镁合金的峰值应力减小;随应变速率升高,挤压态AZ40镁合金的峰值应力增大.当变形温度相同时,动态再结晶晶粒比例随着应变速率的升高而降低;当应变速率相同时,动态再结晶晶粒大小随着变形温度的升高而增大.粗大的未再结晶晶粒有明显的<1010>‖ND和<21-1-0>‖ND两种取向,而再结晶晶粒取向随机;通过热加工图及组织分析,确定了最佳的加工工艺为T=573 K,ε·=0.1 s-1.  相似文献   

10.
对AZ31镁合金进行了冷锻和冷压缩变形,并研究了其在此过程中的组织演变和再结晶动力学.实验结果表明,再结晶分数与退火时间之间的关系可以用JMAK等式采描述.根据动力学分析,可以计算出冷锻和冷压缩的再结晶激活能分别为53.5kJ/mol和85.1kJ/mol.冷压缩处理后的AZ31镁合金的再结晶激活能高于冷锻变形的,这主要与冷锻变形提供了更多的形核点有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号