首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The tribological behavior of polyphenylene sulfide (PPS) composites filled with micro and nano CuO particles in water-lubricated sliding condition were studied. Pin-on-disk sliding tests were performed against a steel counterface of surface roughness 0.09–0.11 μm. The lubrication regimes were established from friction data corresponding to various combinations of loads and sliding speeds. Later experiments were performed using the sliding speed of 0.5 m/s and contact pressure of 1.95 MPa, which corresponded to boundary lubrication regime. Micro CuO particles as the filler were effective in reducing the wear of PPS but nano CuO particles did not reduce wear. The steady state wear rate of PPS-30 vol.% micro CuO composite was about 10% of that of unfilled PPS and the coefficient of friction in this case was the lowest. The examination of the topography of worn pin surfaces of nano CuO-filled PPS by SEM revealed grooving features indicating three-body abrasion. The transfer films formed on the counterfaces during sliding were studied by optical microscopy and AFM. The wear behavior of the composites in water-lubricated sliding is explained using the characteristics of worn pin surfaces and transfer films on the counterface.  相似文献   

2.
The tribological behaviour of nylon 11 reinforced with lead sulphide filler was studied. The composite specimens with different filler proportions were made by compression moulding. The friction and wear experiments were run under ambient conditions in a pin-on-disk machine with the composite pin riding on the flat surface of a steel disk. It was found that 35 vol.% PbS-nylon composite had the highest wear resistance. The friction and wear tests were run with this composite at different loads, speeds and counterface roughnesses. The wear rate increased considerably when the load was increased from 19.6 N to 39.2 N and the sliding speed from 1 m/s to 2 m/s, but the effect of these increases on the coefficient of friction was very small. The wear rate also increased abruptly when the surface roughness was increased from 0.11 to 0.3 μm but the coefficient of friction was not affected. It was found that the wear process was dominated by the transfer film that formed on the counterface. The transfer film and the worn surfaces were studied by scanning electron microscopy. XPS analysis indicated chemical bonding between the polymer composite transfer film and the steel counterface.  相似文献   

3.
The friction and wear properties of an Al 201 alloy and a unidirectionally oriented graphite fiber-aluminum matrix composite (T50-Al 201) were investigated. The experiments were conducted on a pin-on-disc type friction machine. The diameter of the pin was 0.22 cm and the load 4.46 N. The sliding velocity varied between 0.17 and 0.43 m s?1. The disc counterface was of commercially pure iron. It has been found that the friction coefficient μ and the wear rate WL of the composite material decrease as the sliding time is increased until a steady state value is reached. The steady state wear rate is proportional to the reciprocal of the sliding speed in accord with a recently proposed model. Scanning electron microscopy and Auger electron spectroscopy observations indicate that the high initial values of μ and WL are due to a high degree of matrix adhesion to the counterface accompanied by fiber breaking and transfer. The low steady state values of μ and WL are due to the formation of a film that impedes adhesion and confers some degree of self-lubrication. It is suggested that the observed variation of WL with sliding speed is related to changes in the degree of subsurface damage as the velocity is varied.  相似文献   

4.
The thermal, dynamic mechanical, and tribological properties of polyphenylene sulfide (PPS) composites reinforced with carbon nanofiber (CNF) were studied. Dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) were used to study the viscoelastic properties and thermal transitions. In order to study the tribological properties, friction and wear tests in a pin-on-disk configuration were performed. The changes in melting point, crystallization temperature, and glass transition temperature were found to be small as a result of reinforcement. Steady state wear rates of the reinforced composites sliding against the counterface of roughness 0.13–0.15 μm Ra were significantly lower than that of the unreinforced PPS. When the composites were tested against the smoother counterface of 0.06–0.11 μm Ra, the wear rates were higher. The coefficient of friction in all the cases was not practically affected by the presence of CNF. The transfer films formed on the counterface during sliding were examined by optical microscopy and atomic force microscopy (AFM). The variation of wear is discussed in terms of the texture and topography of transfer film.  相似文献   

5.
The relationship between friction, wear, and transfer films of three metal carbide-reinforced amorphous carbon coatings (TiC/a:C, TiC/a:C–H, and WC/a:C–H), sometimes referred to as metal-doped diamond-like carbon coatings, has been investigated. Tribological tests were performed in an in situ tribometer with sapphire or steel hemispheres run against coated flats in dry or ambient air. The sliding contact interface was observed and recorded by optical microscopy during reciprocating sliding tests. The friction and wear behavior during run-in depended on the number of sliding cycles to form a stationary transfer film on the hemisphere. Stationary transfer films formed rapidly (within ten cycles) and the friction coefficient fell to 0.2 (ambient air) or 0.1 (dry air), except with sapphire against WC/a:C–H in dry air; with the latter, a stationary transfer film required nearly 100 cycles to form, during which the friction remained high and the wear rate was from 10 to 100 times higher than the other two coatings. For all coatings, three velocity accommodation modes (VAM) were observed from run-in to steady-state sliding and were correlated with the friction and wear behavior. The delayed adherence of the transfer film to sapphire from WC/a:C–H coatings in dry air is discussed in terms of equilibrium thermochemistry. Friction and wear behavior during run-in, therefore, depended on transfer film adherence to the hemisphere and the VAM between transfer films and the coating.  相似文献   

6.
Abstract

The current work evaluates the wear and frictional performance of ultrahigh molecular weight polyethylene (UHMWPE) and high density polyethylene (HDPE) sliding against different metal counterfaces, stainless steel(SS), mild steel (MS) and aluminium (Al), under dry contact condition. The experiments were conducted using pin on disc machine at different sliding distances (0–40·32 km), 15 N applied load and 2·8 m s–1 sliding velocity. Interface temperatures and frictional forces were measured simultaneously during the sliding, while specific wear rates were determined for every 1·68 km sliding distance. Based on the optical microscopy of the worn surface and wear track, frictional and wear results were analysed and discussed. The experimental results showed that the type of counterface material significantly influences both frictional and wear performances of the selected polymers. This was mainly due to the film transfer characteristics. Higher temperature and friction coefficient for UHMWPE and HDPE were evident when sliding took place against Al counterface. Sliding the polymers against stainless steel showed low friction coefficients compared to other counterfaces.  相似文献   

7.
S. Bahadur  C. Sunkara 《Wear》2005,258(9):1411-1421
The tribological behavior of polyphenylene sulfide (PPS) filled with inorganic nano particles was studied. The fillers investigated were TiO2, ZnO, CuO and SiC whose sizes varied from 30 to 50 nm. The polymer composites were compression molded with varying proportions of these fillers. Wear and friction tests were performed in a pin-on-disk configuration at a sliding speed of 1.0 m/s, nominal pressure of 0.65 MPa, and counterface roughness of 0.10 μm Ra. The polymer composite pins slid against hardened tool steel counterfaces. The transfer films of the composite materials formed on the counterfaces during sliding were studied by optical microscopy and X-ray photoelectron spectroscopy (XPS) and the adhesion between the transfer film and counterface was measured in terms of the peel strength. It was found that the wear rate of PPS decreased when TiO2 and CuO were used as the fillers but increased with ZnO and SiC fillers. The optimum wear resistance was obtained with 2 vol.% CuO or TiO2. These filled composites had the coefficients of friction lower than that of the unfilled PPS. The wear behavior of the composites is explained in terms of the topography of transfer film and adhesion of transfer film to the counterface as observed from peel strength studies. There is a good correlation observed between the transfer film-counterface bond strength and wear resistance.  相似文献   

8.
The tribological performance of copper-concentrate (CC) mineral deposit as the filler in polyphenylene sulfide (PPS) was studied as a function of the filler proportions and sliding test variables. CC is a complex mixture of CuS, FexOy, SiO2, Al2O3, and other trace materials. The design of experiments based upon L9 (34) orthogonal arrays by Taguchi was used. Sliding tests were performed in the pin-on-disk configuration against a hardened tool steel (55-60 HRC) disk. The improvement in wear resistance of PPS was considerable with the use of fillers. The lowest steady state wear rate of 0.0030 mm3/km was obtained for PPS+20%CC+15%PTFE composition. It was two orders of magnitude lower than that of unfilled PPS. The variations in steady state coefficient of friction with the changes in filler proportions and sliding test variables were small. The transfer film was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray photoelectron microscopy (XPS) was used to detect chemical reactive species developed during sliding, especially in the interface between transfer film and its counterface. Wear particles and the polymer worn surfaces were analyzed by energy dispersive spectroscopy (EDS) for elemental distribution.  相似文献   

9.
Author index     
About ScienceDirect 《Wear》1978,50(2):397-403
The friction and wear properties of a cured epoxy resin pin sliding against a steel disc were examined. It was found that the initial (single traversal) coefficient of friction is relatively low (about 0.25) and temperature dependent, while the steady state friction coefficient is relatively high (about 0.8) and temperature independent. It has been determined that the steady state value reflects the friction of iron oxide sliding on itself rather than the epoxy-steel friction. Optical microscopy observations and preliminary electron spectroscopy for chemical analysis experiments suggest that, as in the case of metallic friction, the wear particles form by oxidation of the steel fragments transferred by adhesion to the epoxy surface rather than by direct oxidation of the steel counterpart.  相似文献   

10.
Friction and wear characteristics of a type of polyetheretherketone (PEEK)- based composite were evaluated under two different loading pressures and sliding speeds (P = 1.0 MPa, V = 1.0 m/s and P=2.0 Mpa, V=3.3 m/s). The material was in contact with steel surfaces of two different roughnesses (Ra=0.15 μm and Ra=0.33 μm). Interface temperature, coefficient offriction, depth wear rate, and specific wear rate of the polymer composite changed considerably with the PV value and the counterface roughness. The interface temperature increased with increasing PV value, whereas the friction coefficient decreased. The depth wear rate at the higher PV value was much higher than that at lower PV. In addition, the rougher counterface resulted in a higher friction coefficient, depth wear rate, and specific wear rate, when the PV value was fixed. The effect of counterface roughness on the specific wear rate at the higher PV value was smaller than that at the lower PV. Further variations in friction and wear with testing conditions are discussed along with the corresponding microscopic observations of the worn polymer surfaces and the polymer transferred counterfaces.  相似文献   

11.
表面粗糙度对滑动电接触磨损率的影响   总被引:1,自引:0,他引:1  
在电气化铁路弓网系统中,磨损率是衡量列车运行状态与接触导线使用状态的重要指标。为了充分模拟弓网系统中磨损率情况,利用自行搭建的滑动电接触摩擦磨损试验机对滑板和接触导线进行摩擦磨损试验,分析滑板表面粗糙度、法向压力、接触电流与运行速度对磨损率的影响。得出结论:滑板磨损率随滑板初始表面粗糙度、接触电流、法向压力、运行速度的增加而增加,而高载荷下粗糙度对于磨损率的影响降低;滑板摩擦从磨合期进入稳定摩擦期存在一个临界表面粗糙度,当滑板初始表面粗糙度值等于临界粗糙度值时,其磨损率最低;不同初始表面粗糙度的滑板在跑合期内磨损过程不同,在稳定摩擦期内磨损过程趋于一致,且摩擦试验后滑板表面粗糙度也接近。  相似文献   

12.
Laser-induced surface micro-pits pattern has been successfully used under fluid lubrication to reduce friction and wear through mechanisms of enhanced hydrodynamic lubrication and fluid retention. Limited successes of friction and wear reduction using solid lubricant and textured surfaces have been reported in the literature, and there still lacks an efficient way of finding textures that produce desired tribological performances. This study evaluates the effect of counterface micro-pits texture on wear of a notable alumina–PTFE nanocomposite and uses the Taguchi method and “Simplex Method” to find the micro-pits parameters producing the lowest wear of the composite material. The optimum texture found yields a composite wear rate of 1 × 10?7 mm3/Nm, a value identical to the material’s wear rate against untextured counterface. However, when slid against a freshly replaced composite pin, the existing transfer film on the optimum texture reduces composite’s wear volume at low wear transition by 90% and yields a steady-state wear rate of 3.9 × 10?7 mm3/Nm. On the contrary, preexisting low wear transfer film on untextured counterface increases wear of the newly replaced pin by 10× and yields a wear rate of 4.4 × 10?6 mm3/Nm. Results in this study suggest larger, shallower and sparser counterface pits are more favorable for debris entrapment, transfer film formation and wear reduction when slid against polymeric solid lubricants. It also raises new possibilities of self-adapting low wear counterface texture design that could potentially support low wear without requiring large amounts of run-in wear volume of bulk solid lubricants.  相似文献   

13.
The friction and wear behavior of aluminum-graphite fiber composites was examined as a function of the interfacial reaction zone. Sliding wear tests were performed on three different fiber orientations on a standard pin-on-disk tribology machine. The counterface was made of gray cast iron with a surface hardness of 92 HRB. The wear rate and friction coefficient were found to decrease exponentially with sliding time and eventually reached a steady state condition. This was attributed to the development of a lubricating transfer film on the sliding surface. The wear mechanism was investigated through the use of scanning electron microscopy analysis. A wear model was developed for specimens worn with fibers parallel to the sliding direction. This model incorporates three dominant wear mechanisms: (1) matrix removal by delamination, (2) fiber wear due to plowing and (3) fiber pull-out. The model was evaluated numerically and was found to agree with the experimental data. The model predicts that whenever fiber pull-out is a contributing mechanism in the wear, the wear rate is an exponential function of the normal load. In contrast, the wear rate of composites is proportional to the normal load in the absence of fiber pull-out.  相似文献   

14.
Influence of surface roughness on the friction of TiC/a-C nanocomposite coatings while sliding against bearing steel balls in humid air was examined by detailed analyses of the wear surfaces and the wear scar on the ball counterparts by atomic force microscopy, optical, and confocal microscopy. It was observed that the surface roughness of the coatings essentially determines the wear behavior of the ball counterpart, which consequently influences the transfer film formation. A rough coating causes abrasive wear of the steel ball during the running-in period, which impedes the formation of a stable transfer film and leads to higher values of coefficient of friction (CoF). Moreover, the CoF does not show a decreasing trend after the running-in period, although the roughness of the coating was greatly reduced. Replacing the worn ball with a new one after the running-in period yields lower CoF values similar to that observed for a smooth coating. In both of the cases, no wear of the steel ball occurs and a stable transfer film forms and effectively covers the contact area. The influence of the wear debris on the formation of the transfer film is also discussed.  相似文献   

15.
The role of transfer films formed during the sliding of polymer composites against steel counterfaces was studied in terms of the tribological behaviors of the composites. The composites were prepared by compression molding and sliding tests were run in pin-on-disk sliding configuration. The counterface was made of tool steel hardened to 55–60 HRC and finished to a surface roughness of 0.09–0.10 μm Ra. Wear tests were run for 6 hrs at the sliding speed of 1.0 m/s and contact pressure of 0.65 MPa. Transfer films formed on the counterfaces during sliding were investigated using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). The results showed that as the transfer film became smooth and uniform, the wear rate decreased. The examination of worn surfaces using Energy Dispersive Spectroscopy (EDS: dot mapping mode) showed the back-transfer of the steel counterface material to the polymer pin surface. This behavior is believed to strengthen the polymer pin surface during sliding thereby contributing to the decrease in wear rate. This paper was recommended for publication in revised form by Associate Editor Jae Cheon Lee Minhaeng Cho received his B.S. and M.S. degrees in Mechanical Engineering from Chung-Ang University, Seoul in 1993 and 1995, respectively. He received his M.S. degree in Materials Science and Engineering from Oregon State University in 2000, and his Ph.D. in Mechanical Engineering from Iowa State University in 2004. Dr. Cho is currently an Assistant Professor at the School of Mechanical Engineering at Chung-Ang University in Seoul, Korea. His research interests are in the area of tribology, surface phenomena, and functional surfaces such as laser surface texturing and ultra-thin coatings.  相似文献   

16.
Composites of borosilicate glass reinforced with high strength, high modulus and ultrahigh modulus (UHM) graphite fibers were tested for wear against a cast iron counterface in a pin-on-disk configuration at sliding velocities of 0.24, 0.60 and 0.96 m s?1 under a load of 5 MPa.Discontinuous fiber-reinforced composites generally exhibited higher wear rates and friction coefficients than the continuous fiber-reinforced systems. Continuous UHM fiber-reinforced pins exhibited the lowest wear rate. It is shown that the wear rate depends on the strength and dimensions of the graphite filaments.Two types of wear, mild and severe, were observed at low and high sliding velocities. Mild wear is characterized by a smooth thin stable film on both the pin and the counterface with minimal pitting and plastic deformation of the cast iron. Severe wear is characterized by rough pitted surfaces on the pin and the counterface accompanied by a thick film on the counterface. A proposed mechanism of wear of unidirectional graphite-fiber-reinforced composites which incorporates the transition between mild and severe wear can explain the phenomenological observations.  相似文献   

17.
The effects of n-pentanol vapor on friction and wear of hydrogenated diamond-like carbon (DLC) films during sliding against a 440C stainless steel (SS) ball were investigated with a reciprocating pin-on-disc tribometer. Under dry sliding conditions, the friction coefficient is initially high (>0.2) for a so-called run-in period and then gradually subsequently decreases to an ultra-low value (<0.025). During the run-in period, a carbon transfer film is formed on the SS ball side, which seems to be the key for the ultra-low friction behavior. In n-pentanol vapor environments, the friction coefficient remained nearly constant at ~0.15 throughout the entire test cycles without any noticeable run-in period. Although the friction coefficient is high, there is no visible wear on rubbing surfaces when examined by optical microscopy, and the transfer film forming tendency on the SS ball side was much reduced. In humid environments, the wear prevention effect is not observed and transfer films do form on the ball side. These results imply that the n-pentanol layer adsorbed on DLC film from the vapor phase provides a molecularly thin lubrication layer which can prevent the substrate from wear.  相似文献   

18.
Yoshinori Yamada 《Wear》1997,210(1-2):59-66
Tribological properties of polymeric materials were investigated with various polymer-polymer combinations by means of a pin-on-disk wear testing apparatus. The specific wear rate was related to the cohesive energy density of the polymeric materials, but hat of a given polymer slider was dependent on the mated polymeric materials, and a high wear rate was observed in the sliding against a polymer counterface with higher cohesive energy than that of the slider. By means of X-ray photoelectron spectroscopy it was confirmed that the polymer transfer did occur on the mated polymer, and the degree of covering of the track with transfer films could be estimated. The covering ratio with transfer films was dependent on the polymer-polymer combinations. Poly(tetrafluoroethylene) (PTFE) transfer film on various polymers was very effective in reducing friction irrespective of the covering with the transfer films. With the other polymers, high density poly(ethylene) (HDPE), poly(propylene) (PP), and polyacetal (PAc), the transfer film was less effective in reducing friction than PTFE transfers and friction in the steady state dependent on the polymer-polymer combinations.  相似文献   

19.
Friction and Wear Studies of Octadecyltrichlorosilane SAM on Silicon   总被引:4,自引:0,他引:4  
A self-assembled monolayer of octadecyltrichlorosilane (OTS) was prepared on a single-crystal silicon wafer (111) and its tribological properties were examined with a one-way reciprocating tribometer. The worn surfaces and transfer film on the counterface were analyzed by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that, due to the wear of the OTS monolayer and the formation of the transfer film on the counterpart ball, the friction coefficient gradually increases from 0.06 to 0.13 with increasing sliding cycles and then keeps stable at a normal load of 0.5N. The transfer film is characterized by deposition, accumulation, and spalling at extended test duration. Though low friction coefficients of the monolayer in sliding against steel or ceramic counterfaces are recorded, poor load-carrying capacity and antiwear ability are also shown. Moreover, the monolayer itself or the corresponding transfer film on the counterface fails to lubricate even at a normal load of 1.0N. Thus, the self-assembled monolayer of octadecyltrichlorosilane can be a potential boundary lubricant only at very low loads.  相似文献   

20.
弹性金属塑料复合材料的摩擦磨损特性研究   总被引:1,自引:1,他引:1  
在MPX-2000摩擦磨损试验机上,用环盘摩擦副,结合扫描电镜分别评价了弹性金属塑料(EMP)复合材料与钢在油润滑和干摩擦条件下的摩擦磨损特性。结果表明:两种试验条件下,相同滑动速度的摩擦系数随载荷的升高而减小,当载荷为2000N,滑动速度小于3.52m/s时,摩擦系数基于趋于稳定,EMP磨损率随滑动速度和载荷的升高耐增加,但不同试验条件的增幅不高,油润滑下滑动速度小于3.52m/s和干摩擦条件下滑动速度小于1.96m/s时,EMP以微切削,塑性变形和梨沟磨损为主,并在摩擦副两表面形成转移物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号