首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The direct electrochemistry of hemoglobin (Hb) on multi-walled carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was achieved in this paper. By using a hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier, a new CILE was fabricated and further modified with MWCNTs to get the MWCNTs/CILE. Hb molecules were immobilized on the surface of MWCNTs/CILE with polyvinyl alcohol (PVA) film by a step-by-step method and the modified electrode was denoted as PVA/Hb/MWCNTs/CILE. UV-vis and FT-IR spectra indicated that Hb remained its native structure in the composite film. Cyclic voltammogram of PVA/Hb/MWCNTs/CILE showed a pair of well-defined and quasi-reversible redox peaks with the formal potential (E0′) of −0.370 V (vs. SCE) in 0.1 mol/L pH 7.0 phosphate buffer solution (PBS), which was the characteristic of the Hb heme FeIII/FeII redox couples. The redox peak currents increased linearly with the scan rate, indicating the direct electron transfer was a surface-controlled process. The electrochemical parameters of Hb in the film were calculated with the results of the electron transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.49 and 1.054 s−1, respectively. The immobilized Hb in the PVA/MWCNTs composite film modified CILE showed excellent electrocatalytic activity to the reduction of trichloroacetic acid (TCA) and hydrogen peroxide. So the proposed electrode showed the potential application in the third generation reagentless biosensor.  相似文献   

2.
This paper reports on the fabrication and characterization of hemoglobin (Hb)-colloidal silver nanoparticles (CSNs)-chitosan film on the glassy carbon electrode and its application on electrochemical biosensing. CSNs could greatly enhance the electron transfer reactivity of Hb as a bridge. In the phosphate buffer solution with pH value of 7.0, Hb showed a pair of well-defined redox peaks with the formal potential (E0′) of −0.325 V (vs. SCE). The immobilized Hb in the film maintained its biological activity, showing a surface-controlled process with the heterogeneous electron transfer rate constant (ks) of 1.83 s−1 and displayed the same features of a peroxidase in the electrocatalytic reduction of oxygen and hydrogen peroxide (H2O2). The linear range for the determination of H2O2 was from 0.75 μM to 0.216 mM with a detection limit of 0.5 μM (S/N = 3). Such a simple assemble method could offer a promising platform for further study on the direct electrochemistry of other redox proteins and the development of the third-generation electrochemical biosensors.  相似文献   

3.
An electrochemical DNA biosensor (EDB) was prepared using an oligonucleotide of 21 bases with sequence NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (probe DNA) immobilized on a novel multinuclear nickel(II) salicylaldimine metallodendrimer on glassy carbon electrode (GCE). The metallodendrimer was synthesized from amino functionalized polypropylene imine dendrimer, DAB-(NH2)8. The EDB was prepared by depositing probe DNA on a dendrimer-modified GCE surface and left to immobilize for 1 h. Voltammetric and electrochemical impedance spectroscopic (EIS) studies were carried out to characterize the novel metallodendrimer, the EDB and its hybridization response in PBS using [Fe(CN)6]3−/4− as a redox probe at pH 7.2. The metallodendrimer was electroactive in PBS with two reversible redox couples at E°′ = +200 mV and E°′ = +434 mV; catalytic by reducing the Epa of [Fe(CN)6]3−/4− by 22 mV; conducting and has diffusion coefficient of 8.597 × 10−8 cm2 s−1. From the EIS circuit fitting results, the EDB responded to 5 nM target DNA by exhibiting a decrease in charge transfer resistance (Rct) in PBS and increase in Rct in [Fe(CN)6]3−/4− redox probe; while in voltammetry, increase in peak anodic current was observed in PBS after hybridization, thus giving the EDB a dual probe advantage.  相似文献   

4.
In this paper the direct electron transfer of hemoglobin (Hb) was carefully investigated by using a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) modified carbon paste electrode (CILE) as the basal working electrode. Hb was immobilized on the surface of CILE with the nanocomposite film composed of Nafion and CdS nanorods by a step-by-step method. UV–vis and FT-IR spectra showed that Hb in the composite film remained its native structure. The direct electrochemical behaviors of Hb in the composite film were further studied in a pH 7.0 phosphate buffer solution (PBS). A pair of well-defined and quasi-reversible cyclic voltammetric peaks of Hb was obtained with the formal potential (E0′) at −0.295 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The direct electrochemistry of Hb was achieved on the modified electrode and the apparent heterogeneous electron transfer rate constant (ks) was calculated to be 0.291 s−1. The formal potentials of Hb Fe(III)/Fe(II) couple shifted negatively with the increase of buffer pH and a slope value of −45.1 mV/pH was got, which indicated that one electron transfer accompanied with one proton transportation. The fabricated Hb sensor showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA).  相似文献   

5.
The production of stable redox active layers on electrode surfaces is a key factor for the development of practical electronic and electrochemical devices. Here, we report on a comparison of the stability of redox layers formed by covalently coupling an osmium redox complex to pre-functionalized gold and graphite electrode surfaces. Pre-treatment of gold and graphite electrodes to provide surface carboxylic acid groups is achieved via classical thiolate self-assembled monolayer formation on gold surfaces and the electro-reduction of an in situ generated aryldiazonium salt from 4-aminobenzoic acid on gold, glassy carbon and graphite surfaces. These surfaces have been characterized by AFM and electrochemical blocking studies. The surface carboxylate is then used to tether an osmium complex, [Os(2,2′-bipyridyl)2(4-aminomethylpyridine)Cl]PF6, to provide a covalently bound redox active layer, E0 of 0.29 V (vs. Ag/AgCl in phosphate buffer, pH 7.4), on the pre-treated electrodes. The aryldiazonium salt-treated carbon-based surfaces showed the greatest stability, represented by a decrease of <5% in the peak current for the Os(II/III) redox transition of the immobilized complex over a 3-day period, compared to a decrease of 19% and 14% for the aryldiazonium salt treated and thiolate treated gold surfaces, respectively, over the same period.  相似文献   

6.
A glassy carbon (GC) electrode was modified with cobalt pentacyanonitrosylferrate (CoPCNF) film. Cyclic voltammetry (CV) of the CoPCNF onto the GC (CoPCNF/GC) shows a redox couple (FeIII/FeII) with a standard potential (E0′) of 580 mV. The current ratio Ipa/Ipc remains almost 1, and a peak separation (ΔEp) of 106 mV is observed in 0.5 M KNO3 as the supporting electrolyte. Anodic peak currents were found to be linearly proportional to the scan rate between 10 and 200 mV s−1, indicating an adsorption-controlled process. The redox couple of the CoPCNF film presents an electrocatalytic response to sulfide in aqueous solution. The analytical curve was linear in the concentration range of 7.5 × 10−5 to 7.7 × 10−4 M with a detection limit of 4.6 × 10−5 M for sulfide ions in 0.5 M KNO3 solution.  相似文献   

7.
A new composite film of microbial exocellular polysaccharide-gellan gum (GG) and room temperature ionic liquid (IL) 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) was firstly used as an immobilization matrix to entrap proteins and its bioelectrochemical properties were studied. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV-vis spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the composite film. The obtained results demonstrated that the Hb molecule in the film kept its native structure and showed its good electrochemical behavior. A pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared in pH 7.0 phosphate buffer solutions (PBS, 0.1 M), with the formal potential (E°′) of −0.368 V (vs. SCE), which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The Hb-IL-GG-modified electrode also showed an excellent electrocatalytic behavior to the reduction of hydrogen peroxide (H2O2). Therefore, this kind of composite film as a novel substrate offers an efficient strategy and a new promising platform for further study on the direct electrochemistry of redox proteins and the development of the third-generation electrochemical biosensors.  相似文献   

8.
A robust and effective composite film combined the benefits of room temperature ionic liquid (RTIL), chitosan (Chi) and multi-wall carbon nanotubes (MWNTs) was prepared. Cytochrome c (Cyt c) was successfully immobilized on glassy carbon electrode (GCE) surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Cyt c were investigated in detail. A pair of well-defined and quasi-reversible redox peaks of Cyt c was obtained in 0.1 mol L−1 pH 7.0 phosphate buffer solution (PBS), indicating the Chi-RTIL-MWNTs film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0 × 10−6 to 2.6 × 10−4 mol L−1, with a detection limit of 8.0 × 10−7 mol L−1 (S/N = 3). The apparent Michaelis-Menten constant (Km) was calculated to be 0.45 ± 0.02 mmol L−1. Moreover, the modified electrode displayed a rapid response (5 s) to H2O2, and possessed good stability and reproducibility. Based on the composite film, a third-generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

9.
Here we report on the design and study of a biofuel cell consisting of a glucose oxidase-based anode (Aspergillus niger) and a laccase-based cathode (Trametes versicolor) using osmium-based redox polymers as mediators of the biocatalysts’ electron transfer at graphite electrode surfaces. The graphite electrodes of the device are modified with the deposition and immobilization of the appropriate enzyme and the osmium redox polymer mediator. A redox polymer [Os(4,4′-diamino-2,2′bipyridine)2(poly{N-vinylimidazole})-(poly{N-vinylimidazole})9Cl]Cl (E0′ = −0.110 V versus Ag/AgCl) of moderately low redox potential is used for the glucose oxidizing anode and a redox polymer [Os(phenanthroline)2(poly{N-vinylimidazole})2-(poly{N-vinylimidazole})8]Cl2 (E0′ = 0.49 V versus Ag/AgCl) of moderately high redox potential is used at the dioxygen reducing cathode. The enzyme and redox polymer are cross-linked with polyoxyethylene bis(glycidyl ether). The working biofuel cell was studied under air at 37 °C in a 0.1 M phosphate buffer solution of pH range 4.4-7.4, containing 0.1 M sodium chloride and 10 mM glucose. Under physiological conditions (pH 7.4) maximum power density, evaluated from the geometric area of the electrode, reached 16 μW/cm2 at a cell voltage of 0.25 V. At lower pH values maximum power density was 40 μW/cm2 at 0.4 V (pH 5.5) and 10 μW/cm2 at 0.3 V (pH 4.4).  相似文献   

10.
Liping Wang 《Electrochimica acta》2006,51(26):5961-5965
The electrochemical behaviour of the anticancer herbal drug emodin was investigated by cyclic voltammetry (CV) at glassy carbon electrode. In 0.05 M NH3-NH4Cl (50% ethanol, pH 7.2) buffer solution, a pair of quasi-reversible redox peaks at potentials of Ep1 = −0.688 V and Ep2 = −0.628 V and one irreversible anodic peak, which was a typical anodic peak of emodin, at Ep3 = −0.235 V appeared at a scan rate of 100 mV/s. The irreversible anodic peak currents are linearly related to the emodin concentrations in a range from 8.9 × 10−8 M to 7.8 × 10−6 M with a pre-concentration time of 80 s under −0.620 V. Using the established method without pretreatment and pre-separation, emodin in herbal drug was determined with satisfactory results. Moreover, the electrode process dynamics parameters were also investigated by electrochemical techniques.  相似文献   

11.
A novel composite film comprising cationic gemini surfactant butyl-α,ω-bis(dimethylcetylammonium bromide) (C16H33N(CH3)2-C4H8-N(CH3)2C16H33, C16-C4-C16) and ionic liquid 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF6) has been prepared. The composite film shows good biocompatibility and it can promote the direct electron transfer between hemoglobin (Hb) and glassy carbon (GC) electrode. On the C16-C4-C16 (dissolved in ethanol)-OMIMPF6 film coated GC electrode, the immobilized Hb can exhibit a pair of well-defined, quasi-reversible and stable redox peaks with a formal potential of −0.317 V (vs SCE) in 0.10 M pH 7 phosphate buffer solutions. The electron transfer coefficient (α) of Hb is calculated to be 0.44 and the heterogeneous electron transfer rate constant is 6.08 s−1. With the length of alkyl chains of gemini surfactant increasing and the ethanol concentration rising, the redox peaks of the resulting electrode C16-C4-C16-OMIMPF6-Hb/GC become bigger. The electrode presents good electrocatalytic response to peroxide hydrogen. The kinetic parameters Imax and km for the catalytic reaction are estimated. In addition, UV-vis spectra and reflectance absorption infrared spectra demonstrate that the Hb immobilized in the C16-C4-C16-OMIMPF6 film almost retains the structure of native Hb.  相似文献   

12.
A novel composite film which contains ordered mesoporous carbon (OMC) along with the incorporation of poly(neutral red) (PNR) has been synthesized on glassy carbon electrode by potentiostatic method. This composite film was characterized by scanning electron microscope (SEM) and cyclic voltammetry (CV). Two pairs of the redox peaks appear at formal potential E0′ = +0.045 V (peak I) and E0′ = −0.49 V (peak II) at the PNR/OMC/GC electrode. And it is found that only the redox waves (peak I) exhibits good electrocatalytic activity towards nicotinamide adenine dinucleotide (NADH) and 2-mercaptoethanol (2-ME). Under a lower operation potential of +0.07 V, amperometry method was used to determine the concentration of NADH and 2-ME, respectively. In pH 7.0, sensors for two molecules under their corresponding optimized conditions were developed with acceptable sensitivity and low detection limits in large determination ranges. In addition, these sensors have good reproducibility and stability.  相似文献   

13.
Natural nano-structural attapulgite clay was purified by mechanical stirring with the aid of ultrasonic wave and its structure and morphology was investigated by XRD and transmission electron microscopy (TEM). Cytochrome c was immobilized on attapulgite modified glassy carbon electrode. The interaction between Cytochrome c and attapulgite clay was examined by using UV-vis spectroscopy and electrochemical methods. The direct electron transfer of the immobilized Cytochrome c exhibited a pair of redox peaks with formal potential (E0′) of about 17 mV (versus SCE) in 0.1 mol/L, pH 7.0, PBS. The electrode reaction showed a surface-controlled process with the apparent heterogeneous electron transfer rate constant (ks) of 7.05 s−1 and charge-transfer coefficient (α) of 0.49. Cytochrome c immobilized on the attapulgite modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide (H2O2). The calculated apparent Michaelis-Menten constant was 470 μmol/L, indicating a high catalytic activity of Cytochrome c immobilized on attapulgite modified electrode to the reduction of H2O2. Based on these, a third generation of reagentless biosensor can be constructed for the determination of H2O2.  相似文献   

14.
Jingjing Yu 《Electrochimica acta》2008,53(19):5760-5765
Room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM·PF6) has been successfully immobilized on mesocellular siliceous foams (MSFs) by using a specific annealing method. Nitrogen adsorption/desorption isotherms and scanning electron microscopy (SEM) images reveal that most pores of MSFs are filled with the RTIL and the outer surfaces of MSFs are covered with the RTIL. When hemoglobin (Hb) is immobilized with the resulting hybrid material on a glassy carbon electrode (GCE), a pair of well-defined and quasi-reversible voltammetric peaks for Hb Fe(III)/Fe(II) is obtained. Its formal potential is −0.330 V (vs. saturated calomel electrode) in pH 7.0 phosphate buffer solution (PBS). The peak currents are much larger than those of Hb immobilized with MSFs or BMIM·PF6-MSFs mixture. This indicates that the hybrid material has stronger promotion to the direct electron transfer of Hb, which is related to the effective immobilization of BMIM·PF6 on MSFs. The electron-transfer rate constant (ks) is estimated to be 1.91 s−1. The immobilized Hb retains its native conformation and shows high electrocatalysis to the reduction of H2O2. Under the optimized experimental conditions, the catalytic current is linear to the concentration of H2O2 from 0.2 to 28 μM, and the detection limit is 8 × 10−8 M (S/N = 3). The linear range is wider than those for Hb immobilized with MSFs or BMIM·PF6-MSFs mixture. Thus, the MSFs supported RTILs hybrid material is an ideal matrix for protein immobilization and biosensor fabrication.  相似文献   

15.
A chemically modified carbon ceramic composite electrode (CCE) containing Dichloro{(8, 9-dimethyl-dipyridio [2,3-a;2′,3′-c] phenazine-κ2-N,N′) bis(triphenylphosphine-κ-P)}ruthenium (II) complex which synthesized newly was constructed by the sol-gel technique. Electrochemical behavior and stability of modified CCE were investigated by cyclic voltammetry. The electrocatalytic activity of CCE was investigated and showed a good effect for oxidation of hydrazine in phosphate buffer solution (PBS). A linear concentration range of 6 μM to 1.2 mM of hydrazine with an experimental detection limit of 1 μM of hydrazine was obtained. The diffusion coefficient of hydrazine and its catalytic rate constant for electrocatalytic reaction along with the apparent electron transfer rate constant (ks) and transfer coefficient (α) were also determined.The modified carbon ceramic electrode doped with this new Ru-complex showed good reproducibility, short response time (t < 2 s), remarkable long-term stability (>3 month) and especially good surface renewability by simple mechanical polishing.The results showed that this electrode could be used as an electrochemical sensor for determination of hydrazine in real water samples used in Fars Power Plant Station, including its heat recovery steam generator (HRSG) water (at different operational condition), cooling system and clean waste water.  相似文献   

16.
We report on direct electron transfer (DET) reactions of bilirubin oxidase at multi-walled carbon nanotube-(MWCNT) modified gold electrodes. MWCNTs are very suitable for protein immobilisation and provide surface groups that can be used for the stable fixation on electrodes. They can also effectively replace the natural substrate of BOD - bilirubin, the electron donor for oxygen reduction. The bioelectrocatalytic oxygen reduction was recorded using linear sweep voltammetry (LSV) with BOD covalently linked to the nanotubes. The start potential of the bioelectrocatalytic oxygen reduction at pH 7 and a scan rate of 10 mV/s was determined to be 485 ± 10 mV vs. Ag/AgCl, 1 M KCl (720 mV vs. SHE). Current densities up to 500 μA/cm2 were detected in an air-saturated buffer at room temperature (25 ± 5 °C). Experiments with a rotating disk electrode (RDE) indicate a diffusion controlled electrode reaction. A ks value in the range of 80-100 s−1 could be estimated.The DET could also be observed directly by the redox conversion of a copper centre of BOD under anaerobic conditions. A peak pair with a formal potential of 680 ± 10 mV vs. SHE was found. The T1 site is probably addressed by the electrode as indicated by several experimental studies.  相似文献   

17.
Glucose oxidase (GOD) immobilized in nanogold particles (NAs)-N,N-dimethylformamide (DMF) composite film on glassy carbon (GC) electrode exhibits a pair of quasi-reversible and unstable peaks due to the redox of flavin adenine dinucleotide (FAD) of GOD. When ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) or trihexyltetradecylphosphorium bis (trifluoromethylsulfony) (P666,14 NTf2) is introduced in the film, the peaks become small. But ILs 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF6) make the peaks large and stable. In different composite films the formal potential (E0′) of GOD is different. UV-vis spectra show that the GOD dispersed in these films almost retains its native structure and there are weak interactions between ILs and GOD. Electrochemical impedance spectra display that NAs can promote the electron transfer between FAD and GC electrode; and ILs can affect the electron transfer through interacting with GOD. The thermal stability of GOD entrapped in NAs-DMF-ILs composite films is also influenced by ILs, and it follows such order as: in NAs-DMF-OMIMPF6 > in NAs-DMF-BMIMPF6 ≈ in NAs-DMF-BMIMBF4 > in NAs-DMF. In addition, GOD immobilized in NAs-DMF-OMIMPF6 and NAs-DMF-BMIMPF6 films shows good catalytic activity to the oxidation of glucose. The Imax of H2O2 and the apparent Km (Michaelis-Menten constant) for the enzymatic reaction are calculated.  相似文献   

18.
The oxidation-reduction of the Ferri/Ferrocyanide couple in solution onto modified glassy carbon Rotating Disk Electrodes (RDE) covered by Os(II) bipyridile poly-vinylpyridile (OsBPP) polymer was studied at room temperature. Steady state polarization curves were carried out as a function of the rotation speed, the polymer thickness and the concentration of redox centers within the polymer. This system has the characteristic that the formal redox potentials of both the external redox couple (E0′(Fe(CN)63−/4−) = + 0.225 V vs. SCE) and the mediator polymer (E0′(OsBPP) = 0.260 V vs. SCE) lie very close. It is demonstrated that diffusion of the Ferri/Ferrocyanide inside the polymer can be ruled out. Since the processes of charge transfer at the metal/polymer and the mediating reaction are fast, the experimental results can be interpreted in terms of a kinetics in which the charge transport in the polymer or the diffusion in the solution may be the rate determining step, according to the experimental conditions. A simple model is considered that allows interpreting the experimental results quantitatively. Application of this model allows the determination of the diffusion coefficient of the electrons within the film, De ≈ 10−10 cm2 s−1.  相似文献   

19.
M. Reffass 《Electrochimica acta》2009,54(18):4389-4396
Pitting corrosion of carbon steel electrodes in 0.1 M NaHCO3 + 0.02 M NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with the phosphate concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [HPO42−] = 0 to 180 ± 40 mV/SCE for [HPO42−] = 0.02 mol L−1. During anodic polarisation (E = 50 mV/SCE), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via the scanning vibrating electrode technique (SVET). The addition of a Na2HPO4 solution after the beginning of the polarisation did not lead to the repassivation of pre-existing well-grown pits. The corrosion products forming in the pits were identified in situ by micro-Raman spectroscopy. They depended on the phosphate concentration. For [HPO42−] = 0.004 mol L−1, siderite FeCO3 was detected first. It was oxidised later into carbonated green rust GR(CO32−) by dissolved O2. The beginning of the process is therefore similar to that observed in the absence of phosphate. Finally, GR(CO32−) was oxidised into ferrihydrite, the most poorly ordered form of Fe(III) oxides and oxyhydroxides. Phosphate species, adsorbing on the nuclei of FeOOH, inhibited their growth and crystallisation. For [HPO42−] = 0.02 mol L−1, siderite was accompanied by an amorphous precursor of vivianite, Fe2(PO4)3·8H2O. This shows that, in any case, phosphate species interact strongly with the iron species produced by the dissolution of steel.  相似文献   

20.
A novel composite biomaterial was prepared by combining chitosan, multi-walled carbon nanotubes (MWCNTs), hemoglobin (Hb) and ionic liquid (IL) 1-butyl-3-methyl-imidazolium bromide together, which was further modified on the surface of a carbon ionic liquid electrode (CILE) with another ionic liquid 1-ethyl-3-methylimidazolium ethylsulphate as the binder. Ultraviolet-visible and Fourier transform infrared spectroscopic results indicated that Hb molecules in the composite film retained the native structure. Cyclic voltammetric results showed that a pair of well-defined redox peaks appeared in 0.1 mol/L phosphate buffer solution, indicating that the direct electron transfer of Hb in the composite film with the underlying electrode was realized. The results were attributed to the synergistic effect of MWCNTs and IL in the composite film, which promoted the electron transfer rate of Hb. The composite material modified electrode showed excellent electrocatalytic ability towards the reduction of different substrates such as trichloroacetic acid and NaNO2 with good stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号