首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用规模为20 m~3/d的臭氧/陶瓷膜—生物活性炭组合工艺对污水进行深度处理,考察了除污效果以及膜污染控制方式。在臭氧投加量为5 mg/L、陶瓷膜运行通量为80 L/(m~2·h)的条件下,臭氧/陶瓷膜单元的处理效果最佳。对比臭氧投加量为5和0 mg/L两种试验工况,臭氧直接作用于陶瓷膜表面能够有效减轻膜污染。在22 h运行期间,臭氧投加量为5 mg/L条件下,跨膜压差比较平稳,而投加量为零时,跨膜压差增加了25 k Pa。3种组合工艺的对比结果表明,臭氧/陶瓷膜—生物活性炭工艺出水水质最好,对COD、COD_(Mn)、TOC、DOC、UV_(254)、色度的去除率分别为53%、63%、44%、38%、71%和100%;其次是臭氧—生物活性炭工艺,相应的去除率分别为39%、41%、30%、30%、56%和84%;最后是陶瓷膜—生物活性炭工艺,去除率分别为35%、41%、27%、21%、51%和85%。臭氧/陶瓷膜—生物活性炭组合工艺存在显著的协同作用,能控制膜污染,提高膜通量,改善处理效果。  相似文献   

2.
采用一体化臭氧/陶瓷膜-活性炭组合工艺设备处理北江水源水,研究一体化设备对浊度、色度、CODMn、氨氮和亚硝酸盐氮等常规性指标及新兴污染物等非常规性指标的控制效果,以及臭氧对陶瓷膜污染的缓解效果。研究结果表明,臭氧/陶瓷膜-活性炭组合工艺能够直接处理水源水,在臭氧投加量为3 mg/L、PAC投加量为15 mg/L时,组合工艺对浊度、色度、CODMn和氨氮的去除率分别为99.8%、100%、72.9%和100%。组合工艺出水中未检测到大肠菌群,这表明组合工艺能够有效杀灭细菌。此外,臭氧/陶瓷膜-活性炭组合工艺对检测到的19种PPCPs的去除率约为82.2%,对检测到的5种EDCs的去除率约为92.8%。膜污染模型分析结果表明,滤饼层堵塞污染是原水进行陶瓷膜过滤时膜污染形成的主要形式。  相似文献   

3.
半程混凝/氧化/陶瓷膜工艺中膜污染的原位控制   总被引:1,自引:0,他引:1  
采用KMnO4、NaClO、O3和ClO2等四种氧化剂氧化与半程混凝/陶瓷膜超滤集成工艺处理微污染东江原水,研究氧化剂对去除有机物及原位控制膜污染的影响。结果表明,在四种氧化剂中臭氧对有机物的去除作用最为明显,投加量为3 mg/L时集成工艺对COD Mn和UV254的去除率分别达到60%、68%,与未投加时相比提高幅度较大,且臭氧投加量>1 mg/L后工艺出水中分子质量为1~5 ku的有机物含量明显降低,而200~500 u的有机物含量增加。其他三种氧化剂对有机物的去除作用弱于臭氧,在试验的投加量范围内,对UV254和COD Mn的去除率升幅分别小于8%和10%,且氧化剂对有机物的分子质量分布基本没有影响。但是,四种氧化剂均能使膜污染得到一定程度的减轻,氧化剂对UV254、COD Mn和分子质量分布三个层次的影响均能降低膜污染,并不需要改变有机物的分子质量分布,改变有机物的空间形态就可以减轻膜污染。氧化剂还能降低工艺出水的消毒副产物生成势,对THMFP和HAAFP的去除率相比未投加氧化剂时分别提高了10%和20%左右。  相似文献   

4.
以天津某油田开采废水为原水,采用氧化/陶瓷膜过滤组合工艺对混凝预处理后的上清液进行处理,对比了H2O2、NaClO和O3三种氧化剂分别与陶瓷膜组合的处理效果。结果表明,O3氧化效果最好,在O3投加量为80 mg/L条件下,O3/陶瓷膜组合工艺对浊度、石油类物质、COD、DOC、UV254及荧光类有机物的去除率分别达到99.69%、86.52%、71.03%、46.02%、58.79%和94.14%,并且O3与陶瓷膜之间存在协同作用。陶瓷膜纳米膜孔催化臭氧氧化,可提高有机污染物的降解效率,同时O3能够有效缓解陶瓷膜污染。将臭氧/陶瓷膜组合工艺应用于石化废水处理领域,具有较高的技术可行性和应用价值。  相似文献   

5.
研究了采用PAC-UF组合工艺处理含有腐殖酸的水时,PAC投加量对膜通量、有机物去除率和膜污染阻力的影响。结果表明,有机物去除率随PAC投加量的增加而提高;膜通量在低PAC投加量下得到提高,在高PAC投加量下降低;水中腐殖质类有机物主要造成不可逆膜污染;PAC投加量为20 mg/L时,能有效降低不可逆污染阻力,缓解膜污染。  相似文献   

6.
如何经济、有效地去除难降解有机物是当前水处理领域的难题之一。针对臭氧+FlopacTM工艺对化工废水难降解有机物的去除效果开展中试研究,并应用于具体工程实例。中试结果表明,增加臭氧投加量可有效提高化工废水的可生化性,当臭氧投加量由35 mg/L增加到75mg/L时,出水B/C值由0. 13提高到0. 17,对COD的去除率由27%提高到38%,出水COD浓度稳定在60 mg/L以下。实际工程运行数据表明,臭氧+Flopac~(TM)工艺可有效去除化工废水中的难降解有机物,出水水质稳定,臭氧投加量为65 mg/L、Flopac~(TM)平均滤速为6. 7 m/h时,COD去除率达到44%。  相似文献   

7.
通过小试考察了臭氧氧化对钱塘江原水的净水效果,并确定了臭氧最佳投加量和接触时间。结果表明:前、后臭氧投加量均为0. 5 mg/L时,对CODMn、UV254、氨氮、浊度、铁的去除效果较好;前臭氧接触时间为3 min,后臭氧接触时间为4~7 min,对CODMn等有机物的去除效果较好。原水中加入0. 15 mg/L溴酸盐,臭氧投加量达到2. 0 mg/L时,仍未检测到溴酸盐。  相似文献   

8.
以滦河水为对象进行了还原改性PAC的中试净水效果研究.试验结果表明:改性PAC与混凝剂投加量分别为15 mg/L和10 mg/L时,在预氧化1处投加改性PAC对CODMn和UV254的去除率最高,分别为52.15%和38.22%,比在混合池投加时对两者的去除率均高出2%左右.于预氧化1处投加改性PAC时,其对CODMn和UV254的去除率比在相同点投加未改性PAC时分别提高5%和9%.还原改性PAC可用于处理以非极性有机物为主的高有机物污染水,提高净水效果.  相似文献   

9.
采用预臭氧/混凝/气浮工艺处理水库高藻原水,研究该工艺的最优运行参数。结果表明,在原水藻含量为1.4×108个/L的条件下,当臭氧投加量为1 mg/L、聚合氯化铝铁(PAFC)投加量为20 mg/L、气浮回流比为10%时,除藻效果最好,去除率可达到90%以上;另外发现,适当的预臭氧氧化可提高气浮对藻类的去除效率,投加臭氧较不投加可将除藻率提高40%以上。  相似文献   

10.
采用絮凝—超滤—臭氧催化氧化的工艺,探究了对制版废液中有机物的去除效果。试验表明,本工艺处理适宜条件: pH=9,絮凝剂投加量为12.5mg/L,助凝剂投加量0.04mg/L,水流量为20L/h,操作压力达到0.08MPa,膜面流速值为2×10-3mm/s,臭氧加入量到80mg/L,臭氧催化氧化时间为40min。可使处理后的废液达到工业回用水的标准[1],废液的回用率可达到90%以上。  相似文献   

11.
为研究不同预氧化剂臭氧、次氯酸钠的预氧化效果,以及臭氧不同投加量的净水效果,确定最佳投加量,利用生产性试验及实验室小试装置研究臭氧氧化对钱塘江原水净水效果。结果表明:臭氧对COD_(Mn)、UV_(254)等指标的预氧化效果明显优于次氯酸钠;前后臭氧投加量分别为0.5mg/L时,对COD_(Mn)、UV_(254)、氨氮、浊度、铁的去除效果较好;前臭氧接触时间3min,后臭氧接触4~7min,对COD_(Mn)等有机物的去除效果较好,钱塘江原水中加入0.15mg/L溴酸盐时,臭氧投加量达到2.0mg/L时,仍未检测到溴酸盐。  相似文献   

12.
以受污染地表水为处理对象,通过与单独膜生物反应器(MBR)工艺的对比,考察了臭氧预氧化/膜生物反应器(O<,3>/MBR)工艺的除污效果及膜污染情况.两个系统均稳定运行了55d,其中预氧化工艺的臭氧投量为1.5 mg/L,臭氧反应柱的接触时间为15 min.结果表明,臭氧预氧化不仅能够有效提高对有机污染物的去除效率,而且显著降低了膜污染.三维荧光光谱分析结果显示,臭氧预氧化能够以不同方式缓解膜表面及膜孔内污染物质的积累,从而减轻了膜污染.采用凝胶色谱对水中溶解性有机物(DOM)的分子质量分布进行了研究,结果显示:在254 nm波长处,O<,3>/MBR工艺混合液中DOM的吸收强度明显低于MBR的,尤其是分子质量为500~2 000 u的有机污染物,说明臭氧预氧化能够减轻这类物质引起的膜污染.运行结束后,通过扫描电镜观察发现,臭氧预氧化能够有效降低膜孔的堵塞,从而有助于控制不可逆污染对膜过滤过程的影响.  相似文献   

13.
臭氧预氧化强化混凝处理引黄水库水的中试研究   总被引:1,自引:0,他引:1  
针对引黄水库水的特点,采用臭氧预氧化强化常规工艺处理引黄水库水。中试研究结果表明:臭氧预氧化能够降低常规工艺出水浊度,改善对有机物的去除效果,同时提高常规工艺对氨氮和藻类的去除率。适宜的臭氧投加量为1~2mg/L,当臭氧投加量为1mg/L时,臭氧预氧化后,滤后水浊度、CODMn、UV254、氨氮和叶绿素a的去除率,与常规工艺相比分别提高了2.7,2.5,7.8,5.2和4.8个百分点。  相似文献   

14.
通过中试考察了混凝预处理对浸入式连续微滤工艺处理有机物的强化去除效果。研究表明,选用三氯化铁做混凝剂时的膜过滤性能优于聚合氯化铝,三氯化铁投加量为4 mg/L,反应时间为6 min时膜的过滤性能较好;采用直接微滤膜工艺对有机物的去除效果较差,膜出水CODMn去除率仅为30%,投加4 mg/L三氯化铁后CODMn去除率提高了10.5%,采用混凝预处理对提高浸入式连续微滤工艺有机物的去除效果非常有效。  相似文献   

15.
针对臭氧耦合ASBR/SBR污泥减量化工艺,研究了臭氧氧化对硝化和反硝化能力的影响。结果表明,在臭氧投加量为0.074gO3/gSS左右的条件下,系统进水的COD平均值由氧化前的659mg/L增加到氧化后的713mg/L,碳源量提高了8.2%。进水氨氮由34.3mg/L增加到39.9mg/L,出水氨氮由1.7mg/L升高至1.9mg/L,硝化能力基本未受到影响。SBR段的出水NO3--N平均值由5.85mg/L下降为2.2mg/L,表明系统的反硝化能力增强。投加臭氧前后,系统进水TN平均值分别为49.1mg/L和52.9mg/L,出水TN平均值分别为10.9和13.4mg/L,对TN的平均去除率分别为77.7%和74.6%。可见,臭氧氧化未对SBR段的硝化和反硝化效果产生明显影响。  相似文献   

16.
沸石对MBR膜过滤阻力的影响及其脱色效果研究   总被引:6,自引:1,他引:5  
采用厌氧/好氧膜生物反应器(MBR)工艺处理模拟染料废水,向MBR中投加了沸石,考察了沸石投加量对膜过滤阻力和脱色率的影响.结果表明,在出水流量为12L/h、MLSS为4 g/L的条件下,投加沸石不但可以减小膜过滤阻力,而且还可以提高系统的脱色率;减小膜过滤阻力的最佳沸石投量为500 mg/L,提高系统对染料废水脱色率的最佳沸石投量为1 000 mg/L.  相似文献   

17.
对粉末活性炭(PAC)和活性焦(AC)两种吸附材料与超滤膜组合工艺对城市污水处理厂二级出水中有机物的去除能力进行了考察,并对两种组合工艺对膜比通量的影响进行了探讨。结果表明:PAC和AC的最佳投加量均为40mg/L;PAC和AC吸附可提高超滤膜对二级出水中有机物的去除效果,PAC/AC吸附-超滤组合工艺对UV254的去除率可达67.5%69.8%,对DOC的去除率可达46.5%69.8%,对DOC的去除率可达46.5%47.2%;在最佳投加量条件下,AC吸附可减少膜比通量的下降,而PAC由于投加量过大,导致膜比通量下降较快。  相似文献   

18.
针对松花江水源水质特点,采用臭氧/生物活性炭工艺强化常规处理工艺,对松花江微污染原水进行深度处理。中试结果表明,臭氧预氧化具有助凝作用,可节省混凝剂用量,在试验条件下,当预臭氧投量为1.0 mg/L时,可节省12%以上的混凝剂量;主臭氧氧化工艺的设置可以提高后续活性炭滤池的净水效果;在低温低浊期出水氨氮浓度难以达标,可采用加氯的方法来去除氨氮,最佳投氯量为4.5 mg/L。长期运行效果表明,采用臭氧/生物活性炭工艺强化常规工艺,所需臭氧投加量较低,系统运行稳定,抗冲击负荷能力较强,即使在冬季低温低浊期仍可稳定达标。  相似文献   

19.
以实验室制备的粉末氧化锌(ZnO)为催化剂,考察了ZnO/O3工艺去除水中有机物的效能.采用总有机碳(TOC)指标反映水中有机污染物的含量.结果表明:臭氧投量为1 mg/L、ZnO投量为300 mg/L时,反应60 min后ZnO-O3工艺对TOC的去除率为46%,比单独臭氧化提高了1倍;反应温度明显影响该工艺对有机物的降解效果,在水温为5,10,20和25 ℃时,TOC的去除率分别为17.5%,31.5%,45.9%和51.3%.臭氧浓度和催化剂投量的增加,可以提高TOC的氧化降解效率.  相似文献   

20.
采用O3/BAF和BAF/O3两种组合工艺对石化废水二级出水进行深度处理,探讨了在不同的臭氧投加量下,两种工艺对COD和NH3-N的去除效果,以及处理过程中废水中有机物分子质量分布的变化。结果表明,O3投加量为15 mg/L时,O3/BAF组合工艺对COD的去除率最高为32.8%,此时进、出水COD平均浓度分别为68.82、46.22 mg/L,但最高出水COD浓度50mg/L。而对于BAF/O3组合工艺而言,由于臭氧氧化后置,臭氧投加量越大,对COD的去除率越高,O3投加量20 mg/L时,BAF/O3工艺对COD的去除率要高于O3/BAF工艺,在O3投加量为25 mg/L时出水COD趋于稳定,且低于50 mg/L。SUVA和分子质量分布结果表明,在O3/BAF工艺中O3可以对废水起到预处理作用,使大分子物质转化为小分子物质,提高废水的可生化性,从而增强BAF单元对COD的去除效果。O3/BAF工艺的臭氧投加量为20 mg/L时,对NH3-N的去除效果最好,去除率为35.1%;而BAF/O3工艺对氨氮的去除与臭氧投加量的关系不大,试验过程中在12%左右。由于石化二级出水NH3-N平均在0.4~2.5 mg/L之间,可达到《污水综合排放标准》(GB 8978—1996)中一级标准的限值。从保障最终出水水质的要求来看,BAF/O3工艺更适用于石化二级出水的深度处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号