首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
SUS301L不锈钢非熔透型激光搭接焊的疲劳特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
通过对轨道客车试验用不锈钢熔透型和非熔透型激光焊接头及电阻点焊接头不同的拉力和疲劳对比试验,疲劳试验采用阶梯法和成组法,并进行初步断裂力学和微观分析.结果表明,不锈钢车体非熔透型激光焊具有较熔透型激光焊和电阻点焊更高的疲劳强度,同时在相同激光焊接参数下,改变非熔透型激光焊工艺中非熔透板厚度,能直接影响其工艺的剪切拉伸强度和疲劳强度,加厚非熔透板,疲劳强度提高,剪切拉伸强度降低.  相似文献   

2.
通过优化两种板厚组合(2?mm+1.5?mm和1.5?mm+2?mm)的不锈钢非熔透型激光搭接焊的焊接工艺参数,实现对多参量耦合工况条件下的激光焊接质量控制,并对其疲劳性能进行研究.运用正交试验方法设计了焊接工艺试验,根据正交试验结果分析两种板厚组合焊接接头的3种关键焊接参数(焊接功率P、焊速v、离焦量f)与抗剪强度之间的关系,得出最优焊接工艺参数,即1.5?mm+2?mm板厚组合:P=3700?W,v=4330?mm/min,f=+4?mm;2?mm+1.5?mm板厚组合:P=3700?W,v=4580?mm/min,f=0?mm,对比分析最佳焊接工艺参数下两种板厚组合激光焊焊接接头的疲劳性能,2?mm+1.5?mm板厚组合焊接接头疲劳强度高于1.5?mm+2?mm板厚组合,为不锈钢车体激光焊接参数的进一步优化及疲劳性能研究提供了参考.  相似文献   

3.
为了研究载荷比对不锈钢激光叠焊接头疲劳性能的影响,文中针对2种不同板厚搭配的不锈钢激光叠焊接头分别进行载荷比为0.5和0.1的疲劳试验.结果表明,载荷比对不锈钢激光叠焊的疲劳强度有显著影响,载荷比越大,疲劳强度越低;疲劳裂纹萌生位置附近的焊接残余拉应力较小,这是载荷比对疲劳强度有明显影响的主要原因;疲劳裂纹萌生位置和扩...  相似文献   

4.
利用光纤激光器对不锈钢实施熔透焊试验,分析不锈钢光纤激光熔透焊接头微观结构对疲劳性能的影响。通过微观结构分析方法分析不锈钢光纤激光熔透焊接头微观结构对疲劳性能、硬度、拉伸强度的影响规律。试验结果表明:母材的疲劳寿命比焊接接头的高;在室温腐蚀试验下,循环次数越大焊接接头最大应力荷载下降越明显,腐蚀时间越长,对疲劳性能影响越大;室温疲劳试验中,同等循环次数下,光纤激光熔透焊接头疲劳强度随厚度增大而提高;在瞬断区显微组织对疲劳裂纹扩展断口形貌没有太大影响,母材比焊接接头在疲劳裂纹扩展时更容易出现疲劳条带;焊缝数量可提高焊接接头疲劳性能,在焊缝数量一样时,增加2倍焊缝长度,能够提高疲劳极限,但提升幅度不大;焊缝硬度高于母材的;焊接试样的拉伸测试指标均低于母材的拉伸测试指标。  相似文献   

5.
对采用优化的焊接参数焊接的3 mm+2.5 mm耐候钢激光叠焊接头的疲劳性能进行了实验,通过疲劳升降法确定了接头的中值疲劳强度,最终确定了激光焊叠焊接头脉动拉伸疲劳试验中值F-N曲线。同时对试件断口的宏观及微观断裂特征进行了详细分析。实验结果为轨道车辆的焊接生产提供工艺支撑。  相似文献   

6.
抗剪强度和疲劳强度是激光搭接焊接头性能的两个最重要指标。关于激光搭接焊接头的拉伸和疲劳试样的宽度选取,目前还没有相应的标准进行规定。以不锈钢薄板激光搭接焊接头为研究对象,通过残余应力数值与试样宽度变化关系的测定,确定了考虑和不考虑残余应力影响的拉伸和疲劳试样合理宽度,比较了有无残余应力试样抗剪强度的区别。结果表明,残余应力通过改变焊接接头受力状态和微观变形均匀性降低了薄板激光搭接焊接试样的抗剪强度。  相似文献   

7.
采用OM,SEM分析了TC4钛合金激光叠焊接头各部分显微组织特征,研究了接头力学性能.结果表明,TC4钛合金激光叠焊接头显微组织由焊缝及热影响区组成,焊缝为针状马氏体α'交织成的网篮状组织.0.8 mm厚TC4钛合金薄板激光叠焊最佳工艺参数为功率1 800~2 350 w,焊接速度为1.5~2.5 m/min,此时拉伸试样平均单位长度焊缝承载力为458 N/mm,连接焊缝最大抗剪强度达732 MPa.拉伸过程焊缝截面轴线偏转角θ与接头承载能力相关,θ角越大,接头承载能力越强.  相似文献   

8.
梁行  姜云禄  陈怀宁  阚盈 《焊接学报》2017,38(10):112-116
针对不锈钢薄板熔透和非熔透型激光搭接焊,以80和10 mm作为考虑和不考虑残余应力影响的试样宽度,对两种宽度试样进行一系列的拉伸和疲劳试验,获得了焊接残余应力对薄板搭接接头力学性能的影响规律,进行了有关机理分析. 结果表明,搭接焊缝正、背面存有较大的纵向残余拉应力和较小的横向残余压应力;残余应力的存在会降低搭接焊接头的拉剪强度和疲劳强度. 改变激光入射角和搭接间隙,残余应力对拉剪强度的降低程度随之改变:增大入射角至20°,熔透型接头降低程度达到0°时的7倍,而非熔透型为10倍;搭接间隙在一定范围内增大时,残余应力对拉剪强度的降低程度也随之加剧.  相似文献   

9.
铁道客车用SUS301L不锈钢非熔透型激光搭接焊工艺   总被引:2,自引:0,他引:2  
针对不锈钢车体电阻点焊外观质量较差和密封性不良等问题,研究采用非熔透型激光搭接焊工艺进行不锈钢车体焊接,分析了激光焊接工艺参数(激光功率P、焊接速度v、离焦量F等)对搭接焊熔深和抗剪强度的影响规律.得出合理的激光搭接焊工艺参数为:P=2.0kW,v=22mm/s,F=0mm.激光焊接头剪切强度高于点焊接头,外墙板表面无焊接痕迹.  相似文献   

10.
不锈钢车体侧墙与骨架之间采用激光叠焊取代传统的电阻点焊具有更好的强度优势,且两种焊接方法在疲劳实验中的断裂形式不同。从力学角度来说这可能与两种接头的应力分布状态和应力集中程度不同有关,而应力集中是引起焊接接头疲劳破坏的主要因素。基于ABAQUS有限元分析软件,对这两种接头在不同外加载荷作用下的应力分布进行数值分析,计算应力集中系数,并预测接头疲劳裂纹的起裂位置和扩展趋势。结果表明:电阻点焊接头在车体侧墙一侧的应力集中系数高出激光叠焊接头的4.42倍,在骨架一侧高出激光叠焊接头的2.76倍,疲劳实验裂纹萌生位置在最大应力集中处,与模拟结果一致。  相似文献   

11.
Abstract

Aluminium alloy A6061-T6 or magnesium alloy AZ31 sheet was welded to steel sheet by a friction stir spot welding technique using a scroll grooved tool without a probe. The material flow in the nugget of the Mg/steel weld was less than that in the Al/steel one. The Al/steel weld exhibited higher static tensile–shear strength than the Al/Al weld, while the strengths of Mg/steel and Mg/Mg welds were comparable. Tensile–shear fatigue tests were performed using lap shear specimens of both dissimilar and similar welds. The dissimilar welds exhibited nearly the same fatigue strengths as the similar ones. The effective nugget size in the dissimilar welds was defined as the area where Al or Mg alloy remained on the steel side after static fracture. When the fatigue strengths of dissimilar welds were evaluated based on the effective nugget size, the normalised fatigue strengths of Al/steel and Mg/steel welds were comparable.  相似文献   

12.
激光冲击强化对不锈钢焊接接头拉伸性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
周留成  周磊  李应红  汪诚 《焊接学报》2011,32(4):52-54,58
利用激光冲击强化对12Cr2Ni4A不锈钢焊接接头进行处理,比较了激光冲击一次和二次前后焊接接头拉伸性能、显微硬度和表面残余应力.结果表明,12Cr2Ni4A 焊接试件经过二次激光冲击强化后,显微硬度提高了50%,抗拉强度由818.5 MPa提升至863.8 MPa,并且断裂区域由焊接热影响区转移至基体处,焊接试件的拉...  相似文献   

13.
Abstract

Lap joints of dual phase steel sheets of 1·0 mm were prepared by adhesive bonding, spot welding and weld bonding processes using a one component epoxy base structural adhesive. Mechanical properties of the joints were evaluated by tensile shear and fatigue tests. The size of the weld nugget for both spot weld and weld bond was measured for different welding parameters (current, time) and compared. For identical welding parameters, weld bonded nuggets exhibit higher nugget diameter. Tensile shear strength of weld bonded joints is 40 and 58% higher than spot welded joints and 15 and 39% higher than adhesive bonded joints and for DP590 and DP780 steels respectively. Considering 106 cycles, the endurance limit of weld bonded joint is much higher than spot welded joint but smaller than adhesive bonded joints. Overall the performance of weld bonded joints is superior to those of resistance spot welding.  相似文献   

14.
The static and fatigue strength of crush durable structural adhesive-bonded lap joints of steel sheets for automobiles was evaluated by tensile shear tests. The steel sheets used in this study were uncoated and galvannealed (GA) with tensile strength ranging from 270 MPa-grade to 980 MPa-grade and the thickness ranging from 0.7 to 1.8 mm. Also, the effects of the adhesive types were evaluated. The results are as follows: In the static tensile shear tests, when the steel sheets deformed during the tensile test, the tensile shear strength increased with the increase in the base metal properties, such as the yield strength and thickness; however, when the base metal properties were sufficiently high not to undergo plastic deformation, the tensile shear strength exhibited a constant value. On the other hand, the effect of base metal properties on the fatigue joint strength was relatively small. The static joint strength of the GA steel joints was slightly lower than that of the uncoated steel sheets; however, the fatigue strength of the GA steel joints was higher than that of the uncoated steel sheets. The coating failure of the GA was affected by the type of adhesive, base metal properties and type of test. Choosing the proper adhesive can reduce the failure of the GA coating, and the high strength steel showed fewer coating failures than the mild steel.  相似文献   

15.
When galvanized steel sheets are closely overlapped and welded by laser lap welding, a large amount of molten metal spatters, resulting in a poor surface appearance of the weld and weakened strength of the welded joint, as compared with that of cold-rolled steel sheets. Whereas in the case of aluminium-coated steel sheets, even when they are closely overlapped and welded by laser lap welding, no spattering occurs. Thus, a good surface appearance of the weld is obtained, but the welded joint has lower strength. In both the mentioned cases, it is known that if a clearance of about 0.1 mm is provided between the steel sheets, laser lap welding produces a good surface appearance of the weld and the welded joint strength equal to that of the cold-rolled steel sheets. This report discusses specifically how, in laser lap welding of overlapped Al-coated steel sheets, Al of the coated layer comes to enter the weld metal, also specifically how to reduce the joint strength, as well as what behaviours of Al are present when a clearance is provided between the steel sheets. When the steel sheets are closely overlapped and welded, Al becoming molten on the base metal side of the bond of the overlapped face becomes swallowed up by the bath streams of the molten pool, flowing into the molten pool, then forming the Fe–Al intermetallic compound, while not being sufficiently stirred. It is considered that when subjected to the tensile shear test, the Fe–Al intermetallic compound starts to fracture, thereby causing a partial loss of the weld metal and a reduction in the joint strength. On the other hand, when a clearance is provided between the steel sheets, it may be inferred that the fusion Al on the base metal side of the bond stays in place without flowing into the molten pool, consequently not forming the Fe–Al intermetallic compounds within the weld metal.  相似文献   

16.
A series of tensile tests were carried out on fillet welded lap joints assisted with bonding for investigating the static tensile strength characteristics of the joints from the viewpoints of stress reduction effect around the welded part due to bonding. It was confirmed that the mechanical properties of epoxy resin bonding used in this study were not deteriorated by heating to less than 150°C. When the fillet welded lap joints with bonding were assembled, the bond layer 20 mm from the weld toe was subjected to heating to over 150°C. In other words, the mechanical properties in that region deteriorated. The strengths of the elastic limits of specimens with welding and bonding were higher than those of specimens with only welding by from 60 to 100 MPa. The ultimate tensile strengths of them were almost the same because they were broken at the base plate. The strains around the weld toe and the root of specimens with welding and bonding were smaller than those of specimens with welding by around 13% in the elastic region. The strengths of specimens with only bonding were 170 MPa, which could be explained by a theory of elastic stress distribution. Even if the bond layer 20 mm from weld toe of the specimens with welding and bonding was thermally damaged, the possibility was confirmed that the residual bond layer had around 100 MPa in strength. It could be concluded that the strength of the residual bonding assisted to decrease the stress around the welded part of the specimens with welding and bonding.  相似文献   

17.
This paper deals with strengthening of spot-welded lap joints by a new hardened zone. Based on the equation to predict the strength proposed by past researchers, the factors necessary for strengthening were extracted. And, based on these factors, the strengthening of spot-welded lap joints was examined. First of all, in order to increase the hardened zone, the vicinity of the nugget edge was heated with a laser. Next, tensile shear tests were conducted by using spot-welded lap joints, which were heated by laser at various distances from the nugget. Finally, the relationship between tensile shear strength and the distance from the nugget centre to the crack was clarified. As a result, by increasing the hardened zone, we found that the fracture position was far away from the nugget edge. And, we found that the tensile shear strength could be improved by 15%.  相似文献   

18.
Hot stamping spot welding tailored blank technology is a process to produce spot welded automotive body parts by the following process: spot welding steel sheets in lap configuration → hot stamping (heating to about 900°C) → quenching and forming in water-cooled die → shot blasting to remove scale. This process has the advantage of producing high strength lap welded automotive body parts without increasing the number of forming dies. In this study, the mechanical properties of the hot stamped spot weld (spot welding → hot stamping) and conventional spot weld (hot stamping → spot welding) of the 1500 MPa class uncoated boron steel sheets were compared. The obtained results are as follows. The tensile shear strength (TSS) of the hot-stamped spot weld and conventional spot weld were comparable and the fracture modes were the same. On the other hand, the cross tension strength (CTS) of hot-stamped spot weld was significantly higher than that of the conventional spot weld. The fracture position of the hot-stamped spot weld was outside the nugget and conventional spot weld was inside the nugget. The high CTS of the hot-stamped spot welds might be caused by the improvement of the fracture toughness of the nugget, which was caused by reduction of the solidification segregation of the phosphorus. It is assumed that the heating process after spot welding leads to the reduction of the solidification segregation. For the tension test because there was no HAZ softening in the hot-stamped spot weld, no fracture was observed in HAZ and a higher elongation was obtained.  相似文献   

19.
采用外界铜板作为导电体的点焊,有单面双点和单面单点两种形式.用一台并列双电极式加辅助电极形式的焊接设备焊接三种搭接接头形式的试件,试件搭接方式分别是:薄板在铬锆铜乎台接触,厚板在电极侧,完成单面双点和单面单点的焊接;厚板在铬锆铜平台侧,薄板在电极侧,用单面双点方式进行焊接焊接电流、压力、时间相同的条件下,对三种形式的焊接试样分别进行拉伸试验和金相试验,分析拉伸力、熔核中的气孔尺寸和熔核尺寸,得出在表面不涂装的不锈钢车辆的侧墙、端墙生产中的焊接影响因素.  相似文献   

20.
Abstract

Weld geometries and their effects on the ultimate tensile strength (UTS) of welded specimens were studied experimentally for type 316 stainless steel sheets. Bead on plate welding with 0.1 and 0.2 mm thick workpieces and lap welding with 0.1 mm thick workpieces were carried out. The results showed that the strength of lap welds is influenced by the weld geometry to a large extent. A three-dimensional quasi-steady state heat conduction model was developed to understand the heat flow mechanism during laser welding of sheet metals of finite thickness. The temperature distribution and weld geometry were calculated using the mathematical model and the theoretical results were found to compare well with experimental data. More energy is used to produce melt pools in thinner workpieces than in thicker ones. The model can be used to select suitable process parameters to achieve a predetermined UTS by controlling the weld geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号