首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了获得耐高温电子束固化复合材料环氧树脂基体,研究了三酚基甲烷缩水甘油醚环氧树脂的合成,不同原料配比、合成工艺路线对环氧树脂合成的影响,以及合成环氧树脂的电子束固化树脂的耐热性。研究表明,采用氢氧化钠的饱和碳酸钠溶液作为环氧化反应催化剂和以36%醋酸为洗涤液合成三酚基甲烷缩水甘油醚环氧树脂的路线最合理,合成的树脂经电子束固化后具有与聚酰亚胺树脂相当的耐热性。  相似文献   

2.
三溴代苯基缩水甘油醚的合成   总被引:4,自引:0,他引:4  
本文报导了一种新型活性阻燃剂─三溴代苯基缩水甘油醚的合成及其应用。  相似文献   

3.
以腰果酚、环氧氯丙烷为主要原料,制备腰果酚基缩水甘油醚(CGE),并研究CGE/双酚A型环氧树脂(DGEBA)固化物的性能。研究表明,在CGE用量达15%时,环氧树脂固化物的机械性能达到最大值。与纯DGEBA的性能相比,复合材料的拉伸强度、弯曲强度、冲击强度分别提高了35.4%,43.3%和109.5%。随着CGE含量的增加,材料的玻璃化转变温度降低。固化微观相分离和断面出现"海岛"结构是腰果酚基缩水甘油醚的增韧机理。  相似文献   

4.
以腰果酚、环氧氯丙烷为主要原料,制备腰果酚基缩水甘油醚(CGE),并研究CGE/双酚A型环氧树脂(DGEBA)固化物的性能。研究表明,在CGE用量达15%时,环氧树脂固化物的机械性能达到最大值。与纯DGEBA的性能相比,复合材料的拉伸强度、弯曲强度、冲击强度分别提高了35.4%,43.3%和109.5%。随着CGE含量的增加,材料的玻璃化转变温度降低。固化微观相分离和断面出现"海岛"结构是腰果酚基缩水甘油醚的增韧机理。  相似文献   

5.
以腰果酚和环氧氯丙烷为主要原料,在催化剂苄基三乙基氯化铵的催化下合成了腰果酚缩水甘油醚。考察了反应条件对环氧值的影响,通过正交试验和单因素试验确定了合成腰果酚缩水甘油醚的适宜工艺条件为:n(腰果酚)∶n(环氧氯丙烷)∶n(氢氧化钠)=1∶5∶1.2,醚化温度为80℃,醚化时间为4 h,闭环温度为60℃,闭环时间为3 h,催化剂为腰果酚质量的2%,腰果酚缩水甘油醚的环氧值高达到0.279并且收率达到85.6%。  相似文献   

6.
以5种单官能缩水甘油醚——腰果酚缩水甘油醚(NC-513)、烯丙基缩水甘油醚(AGE)、苄基缩水甘油醚(692)、正丁基缩水甘油醚(660)及甲基丙烯酸缩水甘油酯(GMA)和侧链氨基聚硅氧烷为原料,通过环氧基与氨基的反应对侧链氨基聚硅氧烷进行改性。研究了不同反应条件下,改性聚硅氧烷的凝胶行为,表征了改性聚硅氧烷的结构。结果表明,NC-513与侧链氨基聚硅氧烷的反应活性最大;且室温以上时,改性聚硅氧烷凝胶的形成不受反应溶剂及原料反应官能团量之比的影响,所形成的凝胶为氢键物理交联;当温度升高时,会伴有羟基缩合的化学交联,烯键不与氨基反应。由于GMA中烯键和环氧基均与氨基反应,故形成化学交联凝胶。AGE、692、660改性聚硅氧烷在有溶剂的体系形成凝胶,在无溶剂情况下不形成凝胶。  相似文献   

7.
对γ-缩水甘油醚氧丙基三甲氧基硅烷的合成工艺进行了研究。以无水甲醇作溶剂,在组合催化剂存在下,烯丙基缩水甘油醚和三甲氧基硅烷发生硅氢加成反应制得γ-缩水甘油醚氧丙基三甲氧基硅烷。讨论了影响反应的主要因素,得出了最佳合成工艺条件:组合催化剂用量为200μL/mol三甲氧基硅烷、n(烯丙基缩水甘油醚):n(三甲氧基氢硅)=1.2:1、反应温度80℃、反应时间3h。在此条件下,γ-缩水甘油醚氧丙基三甲氧基硅烷的收率可达92.6%。  相似文献   

8.
以4,4'-联苯二酚、环氧氯丙烷为反应原料,通过Williamson醚反应,合成4,4'-联苯二酚二缩水甘油醚,反应收率95%,纯度99%。所制备的4,4'-联苯二酚二缩水甘油醚,经N,N-二甲基苄胺催化,与甲基丙烯酸反应合成目标产物,反应收率76%,纯度99%。  相似文献   

9.
《应用化工》2017,(10):1938-1941
由2-乙基己基缩水甘油醚与丙酮在催化剂作用下羰基加成生成中间体,经酸水解、中和、洗涤及分子蒸馏,得到乙基己基甘油。考察了各种反应条件对乙基己基甘油质量和收率的影响。结果表明,乙基己基甘油较好的制备条件为:2-乙基己基缩水甘油醚与丙酮的摩尔比为1∶6,催化剂三氟化硼乙醚与2-乙基己基缩水甘油醚的摩尔比为1∶40,反应温度20℃,反应时间3 h,水解温度50℃,水解时间3 h。在此条件下,乙基己基甘油收率大于80%,纯度大于99%。乙基己基甘油能增效传统防腐剂,与苯乙醇复合后,加量0.8%,可通过在洗发香波中的微生物防腐挑战试验。  相似文献   

10.
醇和酚的缩水甘油醚是由醇或酚和环氧氯丙烷在三氟化硼乙醚络合物催化作用下进行开环反应,然后再用碱进行消除反应而完成。  相似文献   

11.
Epoxy resins based on the triglycidyl ether of tris(hydroxyphenyl)methane (TETM) possess a very high heat distortion temperature and superior thermal oxidative stability over other types of epoxy resins. The high performance trifunctional epoxy resin (TETM) was synthesized by the condensation of a hydroxybenzaldehyde with phenol followed by epoxidation with a halohydrin. The structure of the synthesized TETM was confirmed by infrared (IR), mass spectra (MS), and nuclear magnetic resonance (NMR) spectroscopy. Amine terminated polydimethylsiloxanes (ATPDMS) were used to reduce the stress of trifunctional epoxy resin cured with phenolic novolac resin for electronic encapsulation applications. The dispersed silicone rubbers effectively reduce the stress of cured epoxy resins by reducing the coefficient of thermal expansion (CTE) and flexural modulus, while the glass transition temperature (Tg) is depressed by only a small amount.  相似文献   

12.
New curing agents 2,5-diamino-1,3,4-thiadiazole (DATD) and N-(4-hydroxybenzal) N'(4′-hydroxyphenyl) thiourea (HHPT) were synthesised and characterized using FT-IR, 1H-NMR and 13C-NMR analysis. The curing reactions were studied for the epoxy resin diglycidyl ether of bisphenol-A (DGEBA) using new curing agents along with the conventional aromatic diamine 4,4′-diamino diphenyl methane (DDM) for comparison purpose. The curing profiles of DDM, DATD and DATD/HHPT towards DGEBA were examined by Differential Scanning Calorimetry (DSC). Elastic modulus and thermal stability of the cured resins were evaluated using DMA and TGA analysis. When compared with DDM and DATD, the DATD/HHPT curing system accelerated the curing rate due to the presence of phenol molecules in the HHPT. Furthermore, the DATD/HHPT-cured epoxy resin demonstrated higher elastic modulus along with better thermal stability.  相似文献   

13.
引入激光监视技术和高效液相色谱分析,采用平衡法进行常压固液平衡的研究,对固体N-(4-羟基苯基)马来酰亚胺在无水乙醇、异丙醇、无水乙醇+水(水体积分数50%)和异丙醇+水(水体积分数50%)溶剂中的溶解度进行了研究。采用两参数方程和三参数方程分别对实验数据进行回归。结果表明,对于以上体系,三参数方程的拟合效果为佳。此外,所得到的N-(4-羟基苯基)马来酰亚胺在异丙醇溶剂中的溶解度实验数据,为合成N-(4-羟基苯基)马来酰亚胺的粗品进行分离纯化提供了相关数据。  相似文献   

14.
N-(4-羟基苯基)马来酰亚胺的合成研究   总被引:1,自引:0,他引:1  
合成了N-(4-羟基苯基)马来酰亚胺,采用FT-IR对其进行结构表征,考察了合成过程中的多种影响因素,获得了最佳条件的工艺参数。  相似文献   

15.
新型含氟固化剂的合成及环氧胶粘剂的制备   总被引:2,自引:1,他引:1  
虞鑫海  刘万章 《粘接》2009,(5):36-38
利用2,2-双(3-硝基-4-羟基苯基)六氟丙烷,在钯/碳、水合肼和有机溶剂的作用下,合成得到了新型含氟环氧固化剂2,2-双(3-氨基-4-羟基苯基)六氟丙炕,并对其本身的熔点、红外吸收特征、与TGDDM环氧树脂的反应性等性能进行了研究;此外,以其为固化剂,制得了综合性能良好的新型环氧胶粘剂。  相似文献   

16.
In this work, the fundamental kinetic and structure/property information for a novel phosphorus‐based hardener, bis(4‐aminophenoxy) phosphonate is cured with a range of common epoxy resins such as diglycidyl ether of bisphenol A, tri glycidyl p‐amino phenol and tetra glycidyl diamino diphenyl methane (TGDDM) at various cure temperatures. The rate coefficients k1 and k2 for the primary and secondary amine epoxide addition reactions, respectively, were determined and were found to exhibit a positive substitution effect for the TGAP and TGDDM epoxy resins. Etherification or internal cyclization were shown to be important at higher levels of cure conversion, with these reactions being more significant for the TGAP/BAPP system. Some basic structure/property relationships were established between the glass transition temperature (Tg) and epoxide conversion. The master curve obtained for the superimposition of the various cure temperatures for each epoxy demonstrated the independence of the cure mechanism with temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3288–3299, 2006  相似文献   

17.
应敏  张华星 《广东化工》2009,36(12):58-58,77
以对羟基苯基丙烯酸为原料,通过羟甲基化得到3-羟甲基-4-羟基苯基丙烯酸,然后对3-羟甲基-4羟基-苯基丙烯酸的双键加成上羟基,再把羧酸还原成醛基,然后与4-苯氧丁基己胺缩合得到亚胺,加氢还原得到目标产物。  相似文献   

18.
双酚芴的合成及应用进展研究   总被引:3,自引:0,他引:3  
简要概述了双酚芴的合成方法,依据所使用催化剂的不同可分为硫酸法,氯化氢法和巯基磺酸法,同时对双酚芴的应用进行了较全面地论述。  相似文献   

19.
以β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯为原料,通过水解反应和酰氯合成反应合成了抗氧剂中间体β-(3,5-二叔丁基-4-羟基苯基)丙酰氯。对酰氯合成条件进行了研究,得出优惠反应条件为:以氯仿作溶剂、β-(3,5-二叔丁基-4-羟基苯基)丙酸0.02mol、二氯亚砜0.054mol、反应温度50℃、反应时间5h,优惠条件下产品的收率为98.9%。  相似文献   

20.
The high catalytic activity of imidazoles and particularly of 2-ethyl-4-methylimidazole (EMI) for the curing of epoxy resins and the properties of the resulting resins prompted this study concerned with the nature of the curing reaction. Epon 828 epoxy resin and the model compound phenyl glycidyl ether were used as starting materials with EMI, 2-methylimidazole, and dimethylbenzylamine as catalysts. During the curing of the resin at 50°C., the decrease in the infrared absorption of the epoxy band with time is accompanied by a decrease in the intensity of the imine band of the imidazole moiety, indicating its reaction with the epoxy group and its incorporation into the resin. The measurement of the residual epoxy content after curing for 24 hr. at 50 and 140°C. showed that the imidazoles were not more efficient in completing the epoxy reaction than dimethylbenzylamine. In the experiments with phenyl glycidyl ether the rate of reaction of the epoxy group with EMI was faster than the rate of polymerization, proving that the imidazole becomes permanently attached to the polymer chain. These results also suggest that the true catalytic species is not EMI but some addition product thereof. In comparative rate measurements the compound formed from equimolar quantities of EMI and phenyl glycidyl ether was found to be an excellent catalyst. The NMR analysis of the 1:1 and 1:2 adducts of EMI and phenyl glycidyl ether has shown that the second mole of phenyl glycidyl ether reacts with the ring nitrogen in the 3 position and not with the hydroxyl group of the mono adduct. By forming the bis adduct in this way the imidazole molecule acts as a crosslinking agent and at the same time introduces an alkoxide ion which can initiate further polymerization. It is very likely that this crosslinking is the process that leads to the superior physical and chemical properties (high heat deflection temperature, resistance to chemicals and oxidation) of the resins prepared with imidazoles as catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号