首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

2.
Phase evolution and microwave dielectric properties of (1 − x)(Mg0.95Co0.05)2TiO4-xTiO2 (x = 0-1) ceramics prepared by the conventional mixed oxide route have been investigated. Increasing the TiO2 content would lead to a main phase transformation from (Mg0.95Co0.05)2TiO4 to (Mg0.95Co0.05)TiO3, (Mg0.95Co0.05)Ti2O5 and then TiO2. Not only did the TiO2 addition compensate the τf, it also lowered the sintering temperature of specimen. A huge drop of Q × f occurs at a 40-60 mol% TiO2 addition was attributed to the formation of (Mg0.95Co0.05)Ti2O5 phase. Specimen with x = 0.78 can possess an excellent combination of microwave dielectric properties: ?r ∼ 24.77, Q × f ∼ 38,500 GHz and τf ∼ −1.3 ppm/°C.  相似文献   

3.
The microwave dielectric properties of CaTiO3-added Mg2(Ti0.95Sn0.05)O4 ceramics prepared by the mixed oxide route have been investigated. The combination of spinel-structured Mg2(Ti0.95Sn0.05)O4 and perovskite-structured CaTiO3 forms a two-phase system (1 − x)Mg2(Ti0.95Sn0.05)O4-xCaTiO3, which was confirmed by the XRD patterns and the EDX analysis and it also leads to a zero τf. The microwave dielectric properties of the ceramics can be effectively controlled by varying the x value. For practical applications, a new microwave dielectric material 0.91Mg2(Ti0.95Sn0.05)O4-0.09CaTiO3 is suggested and it possesses a good combination of dielectric properties with an ?r of ∼18.01, a Q × f of ∼92,000 GHz, and a τf of ∼0 ppm/°C, which makes it is a very promising candidate material for high frequency applications.  相似文献   

4.
The microwave dielectric properties of La(Mg0.5−xNixSn0.5)O3 ceramics were examined with a view to their exploitation for mobile communication. The La(Mg0.5−xNixSn0.5)O3 ceramics were prepared by the conventional solid-state method at various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Ni0.1Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. Apparent density of 6.71 g/cm3, dielectric constant (?r) of 20.19, quality factor (Q × f) of 74,600 GHz, and temperature coefficient of resonant frequency (τf) of −85 ppm/°C were obtained for La(Mg0.4Ni0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

5.
This study investigated the potential applications of microwave dielectric properties of Mg2SnO4 ceramics in mobile communication. Mg2SnO4 ceramics were prepared using a conventional solid-state method. The X-ray diffraction patterns of the Mg2SnO4 ceramics revealed no significant variation of phase with sintering temperature. A maximum density of 4.62 g/cm3, a dielectric constant (?r) of 8.41, a quality factor (Q × f) of 55,100 GHz, and a temperature coefficient of resonant frequency (τf) of −62 ppm/ °C were obtained when Mg2SnO4 ceramics were sintered at 1550 °C for 4 h.  相似文献   

6.
Microstructure and microwave dielectric properties of Mg-substituted ZnNb2O6-TiO2 microwave ceramics were investigated. Mg acted as a grain refining reagent and columbite phase stabilization reagent. With an increasing Mg content, the amount of ixiolite (Zn, Mg) TiNb2O8 decreased, and the amount of (Zn0.9Mg0.1)0.17Nb0.33Ti0.5O2 and columbite increased. ZnO-Nb2O5-1.75TiO2-5 mol.%MgO exhibited excellent dielectric properties (at 950 °C): ?r = 35.6, Q × f = 16,000 GHz (at 5.6 GHz) and τf = −10 ppm/°C. The material was applied successfully to make RF/microwaves ceramic capacitor, whose self-resonance frequency was 19 GHz at low capacitance of 0.13 pF.  相似文献   

7.
Non-ohmic and dielectric properties of Ca2Cu2Ti4O12 (CaCu3Ti4O12/CaTiO3 composite) ceramics prepared by a polymer pyrolysis method (PP-ceramic samples) are investigated. The PP-ceramics show a highly dense structure and improved non-ohmic and dielectric properties compared to the ceramics obtained by a solid state reaction method (SSR-ceramic samples). ?′ (tan δ) of the PP-ceramic samples is found to be higher (lower) than that of the SSR-ceramic samples. Interestingly, the PP-ceramic sintered at 1050 °C for 10 h exhibits the high ?′ of 2530 with weak frequency dependence below 1 MHz, the low tan δ less than 0.05 in the frequency range of 160 Hz-177 kHz, and the little temperature coefficient, i.e., |Δ?′| ≤ 15 % in the temperature range from −55 to 85 °C. These results indicate that the CaCu3Ti4O12/CaTiO3 composite system prepared by PP method is a promising high-?′ material for practical capacitor application.  相似文献   

8.
The composite ceramics of Ba0.55Sr0.4Ca0.05TiO3-CaTiSiO5-Mg2TiO4 (BSCT-CTS-MT) were prepared by the conventional solid-state route. The sintering performance, phase structures, morphologies, and dielectric properties of the composite ceramics were investigated. The BSCT-CTS-MT ceramics were sintered at 1100 °C and possessed dense microstructure. The dielectric constant was tailored from 1196 to 141 as the amount of Mg2TiO4 increased from 0 to 50 wt%. The dielectric constant and dielectric loss of 40 wt% Ba0.55Sr0.4Ca0.05TiO3-10 wt% CaTiSiO5-50 wt% Mg2TiO4 was 141 and 0.0020, respectively, and the tunability was 8.64% under a DC electric field of 8.0 kV/cm. The Curie peaks were broadened and depressed after the addition of CaTiSiO5. The optimistic dielectric properties made it a promising candidate for the application of tunable capacitors and phase shifters.  相似文献   

9.
The crystal structure, microstructure, dielectric and ferroelectric properties of (1 − x)Na0.5Bi0.5TiO3-xBaTiO3 ceramics with x = 0, 0.03, 0.05, 0.07 and 0.1 are investigated. A structural variation according to the system composition was investigated by X-ray diffraction (XRD) analyses. The results revealed that the synthesis temperature for pure perovskite phase powder prepared by the present sol-gel process is much lower (800 °C), and a rhombohedral-tetragonal morphotropic phase boundary (MPB) is found for x = 0.07 composition which showing the highest remanent polarization value and the smallest coercive field. The optimum dielectric and piezoelectric properties were found with the 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 composition. The piezoelectric constant d33 is 120 pC/N and good polarization behaviour was observed with remanent polarization (Pr) of 12.18 pC/cm2, coercive field (Ec) of 2.11 kV/mm, and enhanced dielectric properties ?r > 1500 at room temperature. The 0.93Na0.5Bi0.5TiO3-0.07BaTiO3-based ceramic is a promising lead-free piezoelectric candidate for applications in different devices.  相似文献   

10.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8-xTiO2 composite ceramics with different weight percentages of BaCu(B2O5) additive prepared by solid-state reaction method have been investigated using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results showed that the microwave dielectric properties were strongly dependent on densification, grain sizes and crystalline phases. The sintering temperature of ZnTiNb2O8 ceramics was reduced from 1250 °C to 950 °C by doping BaCu(B2O5) additive and the temperature coefficient of resonant frequency (τf) was adjusted from negative value of −52 ppm/°C to 0 ppm/°C by incorporating TiO2. Addition of 2 wt% BaCu(B2O5) in ZnTiNb2O8-xTiO2 (x = 0.8) ceramics sintered at 950 °C showed excellent dielectric properties of ?r = 38.89, Q × f = 14,500 GHz (f = 4.715 GHz) and τf = 0 ppm/°C, which represented very promising candidates as LTCC dielectrics for LTCC applications.  相似文献   

11.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

12.
The crystal structure and the dielectric properties of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 ceramics have been investigated. Ca0.8Sm0.4/3TiO3 was employed as a τf compensator and was added to La(Mg0.5Ti0.5)O3 to achieve a temperature-stable material. The formation of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 solid solutions were confirmed by the XRD results and the measured lattice parameters for all compositions. The dielectric properties are strongly correlated to the sintering temperature and the compositional ratio of the specimens. Although the ?r of the specimen could be boosted by increasing the amount of Ca0.8Sm0.4/3TiO3, it would instead render a decrease in the Q × f. The τf value is strongly correlated to the compositions and can be controlled by the existing phases. A new microwave dielectric material 0.45La(Mg0.5Ti0.5)O3-0.55Ca0.8Sm0.4/3TiO3, possessing a fine combination of microwave dielectric properties with an ?r of 47.83, a Q × f of 26,500 GHz (at 6.2 GHz) and a τf of −1.7 ppm/°C, is proposed as a very promising candidate material for today's 3G applications.  相似文献   

13.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

14.
(1 − x)ZnMoO4-xTiO2 (x = 0.0, 0.05, 0.158, 0.25, and 0.35) composite ceramics were synthesized by the conventional solid state reaction process. The sintering behavior, phase composition, chemical compatibility with silver, and microwave dielectric properties were investigated. All the specimens can be well densified below 950 °C. From the X-ray diffraction analysis, it indicates that the triclinic wolframite ZnMoO4 phase coexists with the tetragonal rutile TiO2 phase, and it is easy for silver to react with ZnMoO4 to form Ag2Zn2(MoO4)3 phase and hard to react with TiO2. When the volume fraction of TiO2 (x value) increasing from 0 to 0.35, the microwave dielectric permittivity of the (1 − x)ZnMoO4-xTiO2 composite ceramics increases from 8.0 to 25.2, the Qf value changes in the range of 32,300-43,300 GHz, and the temperature coefficient τf value varies from −128.9 to 157.4 ppm/°C. At x = 0.158, the mixture exhibits good microwave dielectric properties with a ?r = 13.9, a Qf = 40,400 GHz, and a τf = +2.0 ppm/°C.  相似文献   

15.
The microwave dielectric properties and microstructures of (1 − x)La(Mg0.5Ti0.5)O3-x(Ca0.8Sr0.2)TiO3 ceramics, prepared by a mixed oxide route, have been investigated. The forming of solid solutions was confirmed by the XRD patterns and the measured lattice parameters for all compositions. A near zero τf was achieved for samples with x = 0.5, although the dielectric properties varied with sintering temperature. The Q × f value of 0.5La(Mg0.5Ti0.5)O3-0.5(Ca0.8Sr0.2)TiO3 increased up to 1475 °C, after which it decreased. The decrease in dielectric properties was coincident with the onset of rapid grain growth. The optimum combination of microwave dielectric properties was achieved at 1475 °C for samples where x = 0.5 with a dielectric constant ?r of 47.12, a Q × f value of 35,000 GHz (measured at 6.2 GHz) and a τf value of −4.7 ppm/°C.  相似文献   

16.
The influence of Zr substitution for Ti on the microwave dielectric properties and microstructures of the Mg(ZrxTi1−x)O3(MZxT) (0.01 ≤ x ≤ 0.3) ceramics was investigated. The quality factors of Mg(ZrxTi1−x)O3 ceramics with x = 0.01-0.05 were improved because the solid solution of a small amount of Zr4+ substitution in the B-site could increase density and grain size. An excess of Zr4+ resulted in the formation of a great deal of secondary phase that declined the microwave dielectric properties of MZxT ceramics. The temperature coefficient of resonant frequency (τf) of Mg(ZrxTi1−x)O3 ceramics slightly increased with increasing Zr content, and the variation in τf was attributed to the formation of secondary phases.  相似文献   

17.
Solid solutions of (1 − x)La(Co1/2Ti1/2)O3-xLa(Mg1/2Ti1/2)O3 were used to prepare La(Mg1−xCox)1/2Ti1/2O3 using solid-state synthesis. X-ray diffraction patterns of the sintered samples revealed single phase formation. A maximum density of 6.01 g/cm3 was obtained for La(Mg1−xCox)1/2Ti1/2O3 (x = 1) ceramics sintered at 1375 °C for 4 h. The maximum values of the dielectric constant (?r = 29.13) and the quality factor (Q × f = 80,000 GHz) were obtained for La(Mg1−xCox)1/2Ti1/2O3 with 1 wt% ZnO additive sintered at 1375 °C for 4 h. The temperature coefficient of resonant frequency τf was −59 ppm/°C for x = 0.3.  相似文献   

18.
The microwave dielectric properties and the microstructures of ZnO-doped La(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. Doped with ZnO (up to 0.75 wt%) can effectively promote the densification of La(Co1/2Ti1/2)O3 ceramics with low sintering temperature. At 1320 °C, La(Co1/2Ti1/2)O3 ceramics with 0.75 wt% ZnO addition possesses a dielectric constant (r) of 30.2, a Q × f value of 73,000 GHz (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −35 ppm/°C.  相似文献   

19.
BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites were prepared by a solid-state reaction method, and their dielectric and tunable characteristics were investigated for the potential application as microwave tunable materials. It is observed that the addition of Mg2SiO4-MgO into BaZr0.2Ti0.8O3 form ferroelectric (BaZr0.2Ti0.8O3)-dielectric (Mg2SiO4-MgO) composites. The dielectric constant and loss tangent of BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites have been reduced and the overall tunability is maintained at a sufficiently high level. An anomalous relation between dielectric constant and tunability was observed: with the increase of Mg2SiO4 content (>30 wt%), the dielectric constant of composite decreases and the tunability increases. The anomalous increased tunability can be attributed to redistribution of the electric field. BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites have tunability of 14.2-17.9% at 100 kHz under 2 kV/mm, indicating that it is a promising candidate material for tunable microwave applications requiring low dielectric constant.  相似文献   

20.
The microwave dielectric properties and the microstructures of the (1 − x)(Mg0.6Zn0.4)0.95Co0.05TiO3xCa0.61Nd0.26TiO3 ceramic system were investigated. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. Ca0.61Nd0.26TiO3 has a large positive temperature coefficient of resonant frequency. (Mg0.6Zn0.4)0.95Co0.05TiO3 possesses a negative temperature coefficient of resonant frequency. By appropriately adjusting the x value in the (1 − x)(Mg0.6Zn0.4)0.95Co0.05TiO3xCa0.61Nd0.26TiO3 ceramic system, a near-zero τf value can be obtained. A new microwave dielectric material of 0.8(Mg0.6Zn0.4)0.95Co0.05TiO3–0.2Ca0.61Nd0.26TiO3 possesses the excellent dielectric properties of a dielectric constant of 28.6, a Q × f value of 80,600 GHz and a temperature coefficient of resonant frequency of 4.1 ppm/°C and has a lower sintering temperature of 1250 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号