首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以20μm厚的纯Cu片作为中间层,采用20μm厚的非晶态Ni基钎料箔在在900、930、950℃下保温10min真空钎焊W和CuCrZr合金。采用SEM和EDS分析了钎焊接头的界面形貌,检测钎焊接头的剪切强度及显微硬度。结果表明,中间层Cu与母材CuCrZr合金一侧界面结合良好,在CuCrZr合金一侧形成了钎焊热影响区;钎料与W母材界面处形成了反应层,在W母材侧有微裂纹。随着钎焊温度的升高,W侧裂纹增多,造成接头性能的迅速恶化。W和CuCrZr的钎焊温度最好控制在930℃以下。以纯Cu片为中间层,采用Ni基钎料钎焊W和CuCrZr的过程,实质上是Ni与Cu、W互相扩散并反应生成化合物层和固溶体的过程。钎焊接头的最佳剪切强度为144MPa,断裂主要发生在W母材及W与反应层之间的界面。钎缝区域的显微硬度随钎焊温度的升高而降低,CuCrZr合金焊接热影响区的硬度高于其母材。  相似文献   

2.
YG8硬质合金与42CrMo钢的真空钎焊工艺研究   总被引:4,自引:2,他引:2  
采用自行研制的CuMnNi钎料对YG8硬质合金与42CrMo钢的真空钎焊工艺进行了研究.通过三点弯曲试验、润湿性试验、扫描电镜及能谱分析等手段探讨了钎焊温度、钎焊问隙大小对钎焊接头组织和性能的影响.结果表明:钎料对两种母材具有良好的润湿性,钎焊温度在950℃、钎缝宽度为O.20mm时,可获得最优钎焊接头,接头抗弯强度达到436 MPa.在钎缝界面区,形成以FeCoNi为基的同溶体.  相似文献   

3.
朱蕾蕾  王海龙 《热加工工艺》2012,41(13):185-187,190
采用CuMnCo钎料对YG6C硬质合金与16Mn钢的真空钎焊工艺进行研究。通过三点弯曲试验、光学显微镜观察、扫描电镜及能谱分析等手段研究了真空度、钎焊温度和钎缝间隙对钎焊接头组织和性能的影响。结果表明,钎缝中心区为Cu-Mn基固溶体,两侧界面反应区为Fe-Co基固溶体。真空度、钎焊温度和钎缝间隙对钎焊接头的组织和性能有明显影响。高真空条件下钎焊接头的抗弯强度高于中真空条件下钎焊接头抗弯强度。钎焊温度为1095℃时,钎焊接头的抗弯强度最高。钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流失较多,接头强度也较低。在高真空以及钎焊温度1095℃、间隙为0.2 mm时,钎焊接头的抗弯强度最高。间隙过小时,钎缝中夹杂物较多,接头强度较低;间隙过大时,Fe、Co原子难以通过长程扩散越过钎缝,冶金作用较弱,接头强度也较低。  相似文献   

4.
在Ar气保护条件下,采用Ag—Cu—Ni-Li钎料实现了TiAl基合金与42CrMo钢的感应钎焊。结果表明,在界面上有Ti3Al,AlCuTi,AlCu2 Ti,Ag基固溶体、Ag—Cu共晶组织以及TiC等反应相生成。钎焊温度1000℃、保温30s,接头界面组织主要为Al—Cu—Ti的三元金属间化合物,拉伸测试中断裂发生在金属间化合物的内部;当钎焊温度890℃,保温时间30s时,接头室温抗拉强度、高温(400℃)抗拉强度分别达到309MPa,286MPa,拉伸测试中裂纹源于焊缝中金属间化合物粒子与Ag基体固溶体相界处,扩展到两侧母材界面的脆性相处发生断裂。  相似文献   

5.
采用Co-Cr-Ni系钎料在不同的钎焊工艺下对DZ40M定向凝固合金进行了真空钎焊试验,通过扫描电镜、波谱/能谱分析仪和X射线衍射仪对钎焊接头进行了微观组织观察和典型物相成分分析,测试了接头的高温持久寿命和高温拉伸强度.结果表明,钎焊接头主要由近缝区、扩散反应区和钎缝中心区组成,近缝区含有较少的化合物,扩散反应区由钴基固溶体、硼化物和碳化物构成,钎缝中心区则由大量的钴基固溶体、白色和灰色硼化物骨架以及少量的深色条块状或骨架状碳化物等构成;在1180℃/30 min钎焊工艺下接头980℃/83 MPa持久寿命最高,平均值达到18 h 10 min,900℃高温拉伸性能均超过母材技术标准规定的305 MPa.  相似文献   

6.
采用BNi7钎料钎焊不锈钢接头的组织和性能   总被引:1,自引:0,他引:1  
研究了BNi7钎料真空钎焊OCr13不锈钢过程中,钎焊温度和时间对钎焊接头组织和室温及高温性能的影响.结果表明:接头组织由钎缝近母材区的Ni-Fe基固溶体和钎缝中间连续的Ni(Cr,Fe)-P化合物组成.随钎焊温度和时间的增加,钎缝中Nj(Cr,Fe)-P化合物含量逐渐减少,Ni-Fe基固溶体含量相应增多,钎缝强度随之而提高.钎缝高温强度在600℃以下随测试温度的升高而逐渐降低,当测试温度高于600℃时,钎缝强度明显下降.  相似文献   

7.
采用CuMnCo钎料,对YG8硬质合金和2Cr13马氏体不锈钢进行真空钎焊以及焊后淬火处理,研究分析了钎焊温度、钎焊间隙及淬火处理对接头组织和性能的影响。实验表明,采用此种焊接工艺能够得到组织致密,结合良好的焊接接头,钎缝中心区组织为均匀的Cu-Mn基固溶体,在两个界面反应区为Fe-Co基固溶体;在钎焊温度为1085℃,钎焊间隙为0.20mm时,得到了最佳钎焊接头,抗弯强度为732MPa;钎焊后进行970℃淬火处理,接头强度略有下降,但仍能达到581MPa。  相似文献   

8.
YG8硬质合金与0Cr13不锈钢的真空钎焊   总被引:1,自引:1,他引:0  
采用CuMnCo钎料,对YG8硬质合金和0Cr13不锈钢进行真空钎焊工艺研究.铺展试验表明,CuMnCo钎料对两种母材具有良好的润湿性.通过三点弯曲试验、SEM及EDS观察分析,研究了真空钎焊钎焊温度、钎缝间隙对钎缝组织、元素分布及接头力学性能的影响.结果显示:钎焊温度为1070℃,钎缝间隙为0.20mm时得到了具有抗弯强度约为445MPa的最佳钎焊接头,其钎缝中心区组织为均匀的Cu-Mn基固溶体,并在两个界面反应区产生了适量Fe-Co基同溶体.  相似文献   

9.
采用铜箔对C-276镍基耐蚀合金和304不锈钢的真空钎焊工艺进行研究。通过金相显微镜、扫描电镜及能谱分析、显微硬度机和万能材料试验机等手段研究钎焊温度对钎焊接头的微观组织和力学性能的影响。结果表明,钎焊温度对接头的组织和性能有明显影响。钎缝中心区为Cu基固溶体,两侧界面反应区分别为Fe基固溶体和Ni基固溶体。钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流失较多,接头强度也较低。当钎焊温度为1 125℃时,接头的拉剪强度最高,为105.7 MPa,且接头的断裂方式为韧性断裂。  相似文献   

10.
研究了DZ40M定向凝固钴基高温合金的钎焊行为,利用SEM/EDS对钎焊接头的微观组织形貌和物相组成进行了分析,并测试了接头的高温拉伸强度与高温持久寿命。结果表明,接头中间的钎缝组织主要由镍基固溶体与白色条状富W硼化物组成,靠近母材的元素扩散区主要由母材基体和分布在其中的块状硼化物组成,钎缝组织和元素扩散区之间的界面连接区主要由Ni-Co固溶体、灰色块状富Cr硼化物与弥散分布的富Co相组成。对接头的性能测试发现,在980℃下不同钎缝间隙的接头抗拉强度变化不大,抗拉强度约为150 MPa;而在980℃加载66 MPa条件下高温持久寿命随着钎缝间隙的增大而下降。高温持久寿命与钎焊中的硼化物析出相尺寸和含量有关,尺寸越大,含量越高,接头的高温持久寿命越低。  相似文献   

11.
选用CuMnNi钎料对刀具的刀头YG8硬质合金和刀体45钢进行真空钎,通过剪切强度试验、扫描电镜和能谱仪等方法分析了钎焊温度、钎焊间隙和Cu缓冲层对钎焊接头性能和组织的影响。结果表明:钎焊温度在1000℃、钎焊间隙在0.18 mm时,钎焊接头的组织和强度较好,接头剪切强度达280 MPa;添加0.1 mm Cu缓冲层后,缓冲层与钎料和母材结合界面良好,接头剪切强度最高。  相似文献   

12.
采用热压烧结法制备了Al-12Si自钎剂钎料,对不同烧结温度下钎料的钎焊接头力学性能和显微组织进行了研究.结果表明:在烧结温度为460℃时,自钎剂钎料钎焊3003母材的接头抗拉强度达到最大值67 MPa;自钎剂钎料钎焊接头截面上的显微硬度分布不均匀,且钎缝的整体显微硬度高于两侧母材的显微硬度;烧结温度大于440℃的钎料的钎焊接头均匀饱满,钎料扩散较为充分,钎缝中心处主要是由α-Al固溶体和树枝状、针状Si相组成.  相似文献   

13.
采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.  相似文献   

14.
Cu基钎料MIG钎焊接头断裂行为分析   总被引:5,自引:1,他引:4       下载免费PDF全文
研究用Cu3SilMn钎料、Cu10Mn6Ni钎料分别MIG钎焊镀锌Q235钢板及1Cr18Ni9Ti不锈钢板。试验结果表明,在钎料/母材界面分别存在Si、Mn富集带,经XRD分析Si是以Fe2Si相形式存在,而Mn是以固溶体形式存在;用Cu3SilMn、Cu10Mn6Ni钎料钎焊镀锌Q235钢板接头抗拉强度试样均断在母材,抗拉强度为308.2-308.7MPa,钎焊1Cr18Ni9Ti不锈钢板,拉伸均断在钎缝,其抗拉强度分别是331.5MPa、423.6MPa;拉伸断口分析发现,断裂起裂点在搭接钎缝的根部,主要是母材成分与少量的钎料成分混合、溶解而成,是脆性断口;止裂点在钎缝金属中(Cu3SilMn钎料)或在近界面上(Cu10Mn6Ni钎料),是塑性断口。  相似文献   

15.
Cu—Ni—Be合金与T2铜真空钎焊及热处理一体化工艺研究   总被引:1,自引:1,他引:0  
通过SEM、EDS、金相显微镜及拉伸试验分析了不同钎焊温度下钎焊接头的显微组织及性能特征,研究了保温时间对经真空钎焊、淬火复合工艺及时效处理后母材Cu-Ni-Be合金和接头组织及性能的影响.结果表明,钎焊温度对母材与钎料间的冶金作用影响明显,钎焊温度为935℃时,钎焊接头抗拉强度最高达228MPa;除10 min外,随着保温时间的延长,接头及母材性能变化不明显,热处理后接头性能较退火态有所下降;采用CuMnNi钎料进行Cu-Ni-Be合金与T2铜真空钎焊及热处理一体化工艺能够恢复母材性能的92%,接头强度达144MPa.  相似文献   

16.
应用Cu-11%Sn-2%Ni微晶钎料对25Cr3MoA钢和YG6硬质合金进行了真空钎焊,观察了接头组织形貌,建立了钎料层/母材原子互扩散模型,定量分析了焊接区合金元素的分布特征,并在专用仪器上测试了接头的剪切强度.结果表明:使用铜基微晶钎料钎焊25Cr3MoA和YG6,润湿性和铺展性良好,形成的钎缝饱满致密,接头钎着率高;钎缝组织以铜固溶体为主相,其间分布着Cu3Sn相,富Ni的Cu9NiSn3相以及少量的γ-Fe相.铜原子从钎缝向母材的扩散深度约为25μm.应用铜基微晶钎料可实现25Cr3MoA与YG6的真空扩散钎焊连接,接头剪切强度较高,达169 MPa.  相似文献   

17.
采用自制BMn50NiCuCrCo钎料真空钎焊OCr13不锈钢,对其钎焊接头的显微组织和室温及高温力学性能进行了研究.结果表明:接头组织由Mn-Ni-Cu-Fe-Cr-Co固溶体组成,其显微硬度明显高于母材;钎缝室温强度可达275.0 MPa,随测试温度升高逐渐降低,在400℃时降至230.5 MPa,测试温度进一步升高,强度明显下降,500℃、600℃分别为164.4 MPa和96.3 MPa.  相似文献   

18.
针对钛合金和YG8型硬质合金异种材料的真空钎焊工艺和接头可靠性问题展开研究,采用润湿性实验、金相显微镜、显微硬度计、万能拉伸试验机、扫描电子显微镜等实验及测试手段,对Ag94AlMn钎焊试样接头的微观组织结构、维氏硬度、接头剪切强度等进行试验分析。结果表明,银基钎料与钛合金、硬质合金界面冶金结合良好,焊缝表面组织均匀,无微裂纹。钎缝组织为Ag基固溶体,硬质合金母材Co、W元素和钛合金母材Ti、V元素向钎缝内扩散甚少,几乎不发生母材溶蚀;TC4与YG8真空钎焊异种金属真空钎焊,选择银基钎料以及钎焊温度920℃、保温时间10 min的工艺参数,接头剪切强度最高。  相似文献   

19.
采用Al70Si7.5Cu20Zn2.5和Al65Si10Cu20Zn5两种急冷钎料钎焊L2纯铝和6063铝合金,研究钎焊接头的界面微观结构和力学性能.结果表明,急冷钎料钎焊接头由母材、界面区和钎缝中心组成.界面区为αAl固溶体,钎缝中心组织为αAl固溶体 θ(Al2Cu)相 Si相.采用Al65Si10Cu20Zn5急冷钎料钎焊的接头抗剪强度均高于Al70Si-7.5Cu20Zn2.5急冷钎料钎焊的接头强度;匹配氯化物钎剂钎焊的接头强度均高于氟化物钎剂.在相同的工艺条件下,采用急冷钎料钎焊的L2纯铝接头,其抗剪强度都明显高于相应的常规钎料,其增加值在40%左右.  相似文献   

20.
采用AgCuInTi、AgCuTi和AgCuPd三种钎料对NiTiNb形状记忆合金进行真空钎焊,对应的钎焊温度分别为780℃、880℃和980℃,获得了冶金质量良好的接头。微观分析结果表明,三种接头的中心区域均生成了Ag基固溶体,在该固溶体区与NiTiNb母材之间生成了灰黑色扩散反应层,其中AgCuInTi和AgCuTi钎料对应接头的反应层中生成了(Cu,Ni)Ti化合物相,而AgCuPd钎料对应接头的反应层中生成了(Cu,Pd,Ni)-Ti相。测试三种钎料对应接头的室温抗拉强度,强度最高的是AgCuPd钎料对应接头,平均值达到593 MPa;其次为AgCuInTi钎料对应接头,抗拉强度为528 MPa;强度最低的是NiTiNb/AgCuTi/NiTiNb接头,平均值为459 MPa。保温时间对NiTiNb/AgCuInTi/NiTiNb接头微观组织及强度影响较小。分析接头断口发现,断裂主要发生在性能薄弱的(Cu,Ni)Ti相区或(Cu,Pd,Ni)-Ti相区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号