首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
:研究了稀土Nd含量对Mg-10Al-Zn合金的显微组织和力学性能的影响。结果表明:添加稀土后,合金主要由α-Mg相、β-Mg17Al12相和Al2Nd相组成,其中Al2Nd相成片状分布。Nd含量为2.5%时,其抗拉强度和伸长率最大,分别为130 MPa和4.37%。该稀土镁合金的断裂为塑性断裂。   相似文献   

2.
目的 研究Mn对Mg-4Zn合金再结晶组织演变和力学性能的影响,发展高性能Mg-Zn-Mn变形镁合金。方法 以Mg-Zn镁合金为研究对象,利用Mn元素的固溶强化增塑、刺激再结晶形核和钉扎再结晶晶界的特点,通过Mg-Zn-Mn挤压镁合金的显微组织以及室温力拉伸和压缩力学性能测试,分析挤压过程中显微组织的演变和成分对力学性能的影响。结果 Mg-4Zn-2Mn合金平均晶粒尺寸为~7 μm,其拉伸屈服强度、抗拉强度、伸长率、压缩屈服强度和拉压不对称性分别为226 MPa,316 MPa,17%,171 MPa,0.75。结论 合金化元素Mn可有效细化变形镁合金的再结晶组织,随Mn元素含量的增加,Mg-Zn合金再结晶组织不断细化,未再结晶区域增加,合金力学性能增加,拉压不对称性改善。  相似文献   

3.
Nd对AZ91镁合金组织和高温力学性能的影响   总被引:1,自引:0,他引:1  
王小强  李全安  张兴渊 《材料导报》2007,21(Z2):389-391
研究了Nd对AZ91镁合金组织和高温力学性能的影响.结果表明,稀土Nd(1%~4%(wt))的加入明显细化了AZ91镁合金的铸态组织,减少了β(Mg17Al12)相的析出.随着稀土Nd含量的增加,室温、150℃和250℃等3个温度下的强度都是先升后降,Nd含量为1%时合金的强度均达到最大值,特别是150℃下其强度高达203MPa;Nd含量的增加对AZ91镁合金的延伸率影响规律也是先升后降,高温下当Nd含量为2%时合金的延伸率达到最大值,表现出良好的韧性,同时也具有较高强度.  相似文献   

4.
目的 研究Mg-Sn-Ca-Al系合金的力学性能与微观组织之间的关系,以期开发一种新型的高性能、低成本的非稀土镁合金材料。方法 在非稀土Mg-2.5Sn-3.5Ca合金中添加Al和微量Mn元素,制备出了Mg-2.5Sn-3.5Ca-xAl合金(x=1,5;分别标注为TXA341,TXA345)以及Mg-2.5Sn-3.5Ca-5Al-0.5Mn合金(标注为TXAM3450),并对其铸态、均匀化态以及挤压态合金的微观组织与力学性能进行系统研究。结果 TXA345合金兼备高的强度和优良的塑性,其屈服强度、抗拉强度和塑性分别为~340 MPa,~350 MPa,~9.6%;TXAM3450合金表现出更高的屈服强度(~360 MPa)和抗拉强度(~375 MPa),但是其塑性仅有~3.5%;TXA341合金的屈服强度、抗拉强度和塑性分别为~215 MPa,~298 MPa,~4.3%。高Al含量的TXA345合金表现出较高屈服强度,是由于合金内部形成了高密度的G.P.区,并直接导致其再结晶晶粒可细化至~0.8 μm。继续在TXA345合金的基础上添加微量的Mn元素,TXAM3450合金内G.P.区的析出密度继续提高,并且会伴有条带状Al2Ca微米第二相的出现,因此其屈服强度进一步升高,然而该条带状微米相在室温下的塑性较差,因此直接导致TXAM3450合金低的伸长率。结论 相关结果对于设计高强塑兼备的非稀土变形镁合金具有较好的指导意义,为非稀土镁合金在结构材料中的广泛应用提供了可能。  相似文献   

5.
晶粒细化可以有效改善镁合金的力学性能.基于此,以Mg-1.5Zn-0.2Ca合金作为研究对象,通过中低温挤压变形工艺对Mg-1.5Zn-0.2Ca合金组织进行调控,进而对其变形后的组织及性能进行分析.结果表明:随着挤压温度降低,Mg-1.5Zn-0.2Ca合金的塑性变形机制发生转变,变形后的晶粒尺寸逐渐减小,综合力学性能增强.280℃挤压变形时,合金以基面滑移及孪生协调变形为主,动态再结晶后的平均晶粒尺寸约为5.3μm,此时合金的屈服强度为95 MPa,抗拉强度为186 MPa,延伸率为22%.  相似文献   

6.
目的 探索镁合金中常用合金化元素Al,Zn对挤压Mg-1Mn合金的晶粒组织和力学性能的影响,为含Mn合金的成分设计及商业化应用提供理论支撑.方法 在280℃下,对Mg-1Mn,Mg-1Mn-1Al和Mg-1Mn-2Zn合金进行热挤压,制备镁合金棒材,采用拉伸测试分析力学性能,利用电子背散射衍射技术观察晶粒组织,并通过粘塑性自洽模型研究塑性变形机制.结果 在3种合金中,Mg-1Mn-1Al的晶粒最为细小,平均晶粒尺寸为1.3μm,屈服强度、抗拉强度和断裂伸长率分别为309 MPa,313 MPa和19.5%.结论 在Mg-1Mn合金中,与Zn相比,较低含量的Al具有更好的再结晶晶粒细化效果.Al,Zn的添加能够有效抑制基面滑移,促进非基面滑移的开启.  相似文献   

7.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)和室温拉伸试验研究了稀土Nd对热挤压Mg-5 0Y-xNd-0.6Zr(x=0,1.0,2.6,4.2,质量分数/ %,下同)合金微观组织和力学性能的影响.结果表明:随着Nd加入量增大,挤压合金中带状分布的β和Mg24Y5相颗粒增多,促进了动态再结晶的形...  相似文献   

8.
使用扫描电子显微镜(SEM)和光学显微镜(OM)观察、X-射线衍射(XRD)分析以及力学性能测试等手段研究了Bi含量对Mg-3Al-3Nd合金的显微组织和力学性能的影响。结果表明:添加Bi元素可细化Mg-3Al-3Nd合金的组织。当Bi含量(质量分数)为1%时晶粒最小,晶粒尺寸从1854±58 μm减小到890±64 μm;Mg-3Al-3Nd合金由呈网状分布在晶界的Al11Nd3相和分布在晶内的颗粒状Al2Nd组成;随着Bi含量的提高Al11Nd3相和Al2Nd相的数量减少,晶内的BiNd相数量增加;Bi能明显改善Mg-3Al-3Nd合金室温和高温力学性能,Bi含量为1%时其室温和高温力学性能最佳。室温抗拉强度和延伸率分别为167±2.3 MPa和(16.1±0.3)%,高温抗拉强度及延伸率分别为136±1.7 MPa和(19.3±0.3)%。  相似文献   

9.
陈君  张清 《材料保护》2019,52(3):35-39
Mg-6Al镁合金具有较好的铸造性能和力学性能,目前鲜见单一稀土元素对其腐蚀性能影响的报道。通过合金制备、微观组织分析和耐蚀性测试等方法研究了稀土Gd添加量对Mg-6Al镁合金微观组织和耐蚀性能的影响。OM、SEM、EDS、XRD分析结果表明,稀土Gd的添加改善并细化了Mg-6Al合金的铸态组织,形成杆状或块状的Al2Gd新相;动电位极化、浸泡试验等测试结果表明Gd的添加显著提高了Mg-6Al合金在3.5%NaCl溶液中的耐腐蚀性能,Mg-6Al-2%Gd镁合金的腐蚀速度最小,为0.83 mm/a,且腐蚀后组织较为致密,腐蚀产物和腐蚀坑均变小,Mg-6Al-x Gd合金的腐蚀产物主要为Mg(OH)2。  相似文献   

10.
目前,有关镁合金中添加稀土Sm的改性研究多集中于力学性能方面,对增强耐腐蚀性能的影响研究较少。采用腐蚀试验,结合腐蚀速率计算、腐蚀形貌观察和显微组织分析,研究了添加不同含量的Sm对Mg-6Al合金在0.5%(质量分数)Na Cl溶液中腐蚀行为的影响。结果表明:随着Sm含量从0.5%(质量分数,下同)增加到1.5%,Mg-6Al合金的腐蚀速率先降低后升高。向Mg-6Al合金中加入1.0%的Sm后,可细化显微组织,降低腐蚀速率,改善腐蚀形貌,显著提高合金的耐腐蚀性能。  相似文献   

11.
稀土元素Nd对Mg-Zn-Y合金组织结构和力学性能的影响   总被引:1,自引:1,他引:0  
通过制备Mg-6Zn-1.5Y-0.8Zr-xNd(x=0、1、2、3、4)系列合金,研究了稀土元素Nd对Mg-6Zn-1.5Y-0.8Zr合金组织结构和力学性能的影响。通过金相显微镜、扫描电镜、EDS、XRD等手段,观察和分析了合金的微观形貌和组织结构,测量了合金抗拉强度、屈服强度和伸长率等力学性能。结果表明:合金中添加稀土元素Nd后晶粒明显细化,随着Nd元素含量的增加,晶粒细化效果更为明显;通过XRD分析可知,添加Nd元素后,合金中并没有出现新的含Nd的物相;扫描电镜和EDS分析表明,合金中加入的Nd置换了部分Y,形成了Mg3(NdY)2Zn3、Mg3-(NdY)Zn6的相结构,Nd元素对Y的置换主要出现在Mg3(NdY)2Zn3结构中,在Mg3(NdY)Zn6相结构中出现较少;力学性能测试结果表明,随着Nd含量增多,合金晶粒细化,细晶强化作用明显,合金屈服强度逐渐增大,而抗拉强度和伸长率在Nd含量为3%(质量分数)时达到最大,比未添加Nd元素时提高约25%以上。  相似文献   

12.
镁及其合金是目前最轻的金属结构材料,合金化虽然提升了镁合金的力学性能,但导致其导热性能严重下降,限制了镁合金的应用。碳纳米管(CNTs)因具有优异的力学、热学等性能,是最理想的增强体之一,可以用于改善镁合金的力学性能和热学性能。采用粉末冶金法分别以纯Mg、Mg-9Al合金、Mg-6Zn合金为基体制备了不同CNTs含量的镁基复合材料,利用光学显微镜、扫描电子显微镜、透射电子显微镜对复合材料微观组织、基体与增强体界面及析出相进行表征,并对复合材料的拉伸性能和热学性能进行测试。研究结果表明,当CNTs质量分数不超过1.0%时,可提高纯镁基复合材料的导热性能,力学性能仅有稍微降低;将CNTs添加到Mg-9Al合金中,可以促进纳米尺度β-Mg 17 Al 12相在CNTs周围析出,降低了Al在Mg基体中的固溶度,使CNTs/Mg-9Al复合材料的导热性能有所提高。此外,在CNTs/Mg-6Zn复合材料界面处存在C原子和Mg原子的相互嵌入区,这种嵌入型界面不仅有利于复合材料力学性能的提高,也使CNTs起到加速电子移动的“桥”的作用,有利于该复合材料热导率的提高。当CNTs质量分数为0.6%时,CNTs/Mg-6Zn复合材料具有较为优异的热学性能和力学性能,其热导率为127.0 W/(m·K),抗拉强度为303.0 MPa,屈服强度为204.0 MPa,伸长率为5.0%。  相似文献   

13.
合金元素对AM60B镁合金性能的影响   总被引:5,自引:1,他引:4  
为提高镁合金的力学性能,将元素Sr和稀土元素Y、Nd加入到AM60B中.采用X光荧光和X射线衍射对合金的化学成分和物相组成进行了分析,研究了合金元素对AM60B镁合金力学性能的影响,采用扫描电子显微镜对合金试样的断口表面进行了观察,对其断裂行为进行了探讨.研究结果表明,Sr和稀土元素Y、Nd使AM60B镁合金的力学性能得到改善,含Sr和稀土元素Nd的AM60B镁合金的断裂强度和延伸率最高,分别达到224.57 MPa和9.25%,比AM60B镁合金分别提高了32%和38%,合金的屈服强度也得到改善.稀土元素Y和Nd的加入,使AM60B镁合金表现出较大的塑性变形能力.  相似文献   

14.
采用Gleeble-1500D热模拟试验机对ZK60和ZK60-1.0Er镁合金进行了热压缩实验,分析了合金在温度为160~420℃,应变速率为0.0001~1.0s-1条件下的流变应力变化特征。结果表明:两种镁合金在热压缩过程中的流变应力随变形温度的降低和应变速率的升高而增加,在流变应力达到峰值后随即进入稳态流变;稀土Er的加入使得平均变形激活能珚Q值由183kJ/mol降到153kJ/mol,应力指数n值由6提高到8;发生动态再结晶的临界应力σc值随变形温度升高和应变速率降低而降低,在420℃/1.0s-1高温高应变速率时,稀土Er的加入使得ZK60镁合金发生动态再结晶的临界应力值σc由76MPa降到50MPa。通过动态模型构建热加工图并结合金相组织观察可知:稀土Er的加入缩小了ZK60镁合金的热加工失稳区,增加了热加工安全区的功率耗散效率峰值η_(max),由35%增大到45%,促进了动态再结晶晶粒的形核,但抑制了再结晶晶粒的长大。  相似文献   

15.
目的 为进一步扩大镁合金的应用范围,以ZM2为基础合金成分,引入Sn元素,设计一种性能优异且经济成本相对低廉的含Sn稀土镁合金。方法 采用正交试验设计方法,选取正交表L9,对Mg-Zn-Ce-Zr-Sn合金成分配比进行研究,综合考虑抗拉强度、延伸率、硬度3项指标,得出最优成分配比;对Sn元素的含量进行调控,对比分析合金组织及力学性能,验证当Sn元素的质量分数为0.2%~0.4%时,Mg-4.5Zn- 1.2Ce-0.6Zr-xSn合金的组织与性能是否最佳。结果 Mg-Ce-Zn-Zr-Sn合金的优选成分如下:Zn的质量分数为4.0%~4.5%、Ce的质量分数为1.2%~1.5%、Sn的质量分数为0.2%~0.4%。优选合金成分为Mg-(4.0~4.5) Zn- (1.2~1.5)Ce-0.6Zr-(0.2~0.4)Sn。极差分析及影响因素主次分析结果表明,新引入的Sn元素对合金的综合力学性能有着重要的影响。组织及力学性能分析结果表明,当Sn的质量分数为0.2%时,Mg-4.5Zn- 1.2Ce-0.6Zr-xSn合金具有最为优良的组织及力学性能,抗拉强度、延伸率、布氏硬度分别为212 MPa、4.5%、69.8HBW5/250。结论 优选方案的试验数据表明,利用正交试验设计得到的新型合金综合性能较好,满足ZM2合金的国家标准。  相似文献   

16.
采用X射线衍射、扫描电子显微镜、X射线能谱仪等表面分析技术以及电化学技术,以稀土镁合金Mg-3Y-1.5Nd为基体,研究小球藻对其腐蚀行为的影响。结果表明:含小球藻培养液和不含小球藻培养液的镁合金表面主要腐蚀产物均为Mg(OH)2,Mg 3(PO4)2以及Mg 2(OH)3 Cl;含小球藻培养液的镁合金表面腐蚀产物中镁元素的占比较未含小球藻要小(29.6%vs 39.8%);腐蚀产物存在疏松的结构有利于腐蚀性离子侵入,促进镁合金的进一步腐蚀;小球藻的光合作用导致生物膜保护层下出现高浓度的溶解氧,使氧还原阴极电流变大,从而增大Mg-3Y-1.5Nd合金的腐蚀速率。综上所述,当小球藻存在时,Mg-3Y-1.5Nd合金受到的腐蚀更为严重。  相似文献   

17.
为了制备高力学性能细晶Mg-6Al合金坯料,采用金相显微镜、材料拉伸实验机等手段对Mg-6Al合金铸坯进行等径道角挤压实验研究.并利用热处理工艺对挤压后材料进行处理,研究热处理工艺参数对材料力学性能的影响规律.结果表明,Mg-6Al合金的铸坯的抗拉强度为196.4MPa,延伸率为12.6%.经过等径道角挤压的Mg-6Al合金坯料的晶粒被大大细化,其晶粒尺寸由铸坯的140μm左右细化到8μm左右.其力学性能有很大提高,抗拉强度由196.4MPa提高到308.2MPa;延伸率由12.6%提高到30.6%.等径道角挤压工艺是一种非常好的制备高力学性能、细晶Mg-6Al合金的工艺方法.固溶和人工时效热处理工艺对等径道角挤压的Mg-6Al合金坯料的强度有较大影响,对延伸率影响较小.  相似文献   

18.
对Mg-Zn-Zr合金进行高应变速率多向锻造变形,研究了其组织演变和力学性能。结果表明,高应变速率多向锻造工艺能强烈细化合金的晶粒组织,形成由蜂窝状粗大再结晶组织和岛状细小再结晶组织构成的新颖组织,初始晶界附近和初始晶粒内部的再结晶机制分别是旋转动态再结晶和孪生诱发动态再结晶。由于高应变速率多向锻造工艺具有强烈的晶粒细化能力并能有效避免强烈的基面织构,可大幅提高合金的综合力学性能。累积应变∑Δε=2.64时,ZK21和ZK60抗拉强度、屈服强度和延伸率分别为341.6 MPa、270.7 MPa、25.1%和330.2 MPa、232.3 MPa、24.8%。  相似文献   

19.
目的 研究在Mg–0.2Ca挤压合金基础上分别添加质量分数为0.3%的Ce和0.6%的Ca后对合金的组织、力学性能和热稳定性的影响,探究Ce和Ca 2种合金元素对镁合金的强化和中高温条件下的稳定化效果。方法 首先,熔炼制备Mg–0.2Ca、Mg–0.2Ca–0.3Ce和Mg–0.8Ca 3种成分的合金;随后,对3种合金进行挤压变形,并对挤压合金组织和力学性能进行表征和测试;最后,在300 ℃下对3种合金进行等温退火,研究其组织演变过程和力学性能的衰减情况。结果 在Mg–0.2Ca合金基础上添加质量分数为0.3%的Ce可将挤压态合金再结晶分数由约92%降至约53%,再结晶晶粒尺寸由约1.64 μm细化至约0.86 μm,Mg–0.2Ca–0.3Ce三元合金的屈服强度可大幅提升至约364 MPa,该屈服强度与Mg–0.8Ca合金相当(约361 MPa),表明单位质量Ce的添加对强度提升的效果优于Ca。退火3 h后,Mg–0.2Ca–0.3Ce三元合金屈服强度的下降幅度约为124 MPa,显著低于Mg–Ca二元合金(约170 MPa)。以Mg–0.2Ca–0.3Ce合金为例进行静态再结晶组织演化分析表明,静态再结晶过程产生了稀土织构,其再结晶机制为不连续静态再结晶。结论 在Mg–0.2Ca挤压合金中添加质量分数为0.3%的Ce后,屈服强度由约307 MPa提升至约364 MPa,其强度与继续添加质量分数0.6%的Ca合金相当,Mg–Ca–Ce三元合金热稳定性优于Mg–Ca二元合金。  相似文献   

20.
将Mg-1Al-0.4Ca-0.5Mn-0.2Zn(质量分数,%)合金在不同温度挤压,研究其微观组织和力学性能。结果表明:在260℃和290℃挤压的合金均发生不完全动态再结晶,再结晶晶粒尺寸分别为0.75 μm和1.2 μm。二者均具有高密度的G.P.区和球状纳米析出相,能抑制位错运动并为动态再结晶提供丰富的形核位点。沿晶界析出的纳米相能抑制晶界的运动和限制再结晶晶粒的生长,从而生成尺寸为0.75 μm的超细晶粒。随着挤压温度从260℃提高到290℃,合金的屈服强度从322 MPa提高到343 MPa,伸长率分别为13.4%和13%,没有明显的变化。挤压温度的提高促进了动态析出和动态回复,使合金中积累了高密度纳米盘状相和球状相,大量位错通过动态回复转变成小角度晶界,将未再结晶区域细分成密集的层状亚晶粒,二者均能抑制新位错的运动。这些因素,是在290℃挤压后的合金仍具有较高屈服强度和塑性没有明显变化的主要原因。纳米相对位错的钉扎在一定程度上限制了动态回复的发生,使合金中仍存在较高数量的残余位错,也有利于提高其屈服强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号