首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper; dynamical resource allocation scheme is proposed to improve throughput and fairness in the modern broadband wireless systems such as IEEE 802.16 Worldwide Interoperability for Microwave Access. To assign the subcarriers to users, dynamic fractional frequency reuse is used. In dynamic fractional frequency reuse, each cell is partitioned into two regions, one called super region and another called regular region. Regular region is divided into 3 parts which correspond to the three sectors. In this method, a utility function is firstly used for the subcarrier allocation to the geographical regions and then opportunistic scheduling is applied for the assignment subcarriers to users in each cell. In order to increase the throughput of the system, adaptive modulation and coding techniques are used. Using dynamic fractional frequency reuse reduces fairness among users of a cell. Therefore a random access sub-band is applied to improve the fairness of the system.  相似文献   

2.
In conventional OFDMA cellular systems, mobile stations (MSs) suffer from large ICI in fully loaded cellular environments with full cell frequency reuse, especially at the cell-edge. The fundamental cause is that the signals from serving Base Station (BS) and interference BSs, are modulated by same exponential bases, at same subcarrier. In this paper, a generalized low-complexity fractional Fourier transform (FrFT) based biorthogonal frequency division multiple access (B-OFDMA) cellular system with multiple angle division reuse scheme (MADR) scheme for inter-cell interference (ICI) cancellation is proposed. FrFT angle is regarded as a kind of time-frequency combination resource (TFCR), and it can be optimally allocated to each BS of the cellular system, based on simplified minimal base correlation coefficient (MBCC) criteria, which confirms the inner-cell mutual orthogonality between modulating bases at different subcarriers, and inter-cell mutual approximate orthogonality between modulating bases at same subcarriers. Therefore, at the receiver, ICI can be dramatically suppressed by MMSE equalization and correlative detection in respective optimal FrFT domain. Extensive system simulations are conducted for various practical scenarios to demonstrate the superior performance of the proposed FrFT MADR scheme in bit error rate (BER) and system throughput, especially for cell-edge MSs, compared with conventional OFDMA cellular with different ICI cancellation schemes and scheduling schemes.  相似文献   

3.
This paper considers the problem of spectrum sharing in orthogonal frequency division multiple access cellular relay networks. Firstly, a novel dynamic full frequency reuse scheme is proposed to improve the spectral efficiency. Different from the conventional full frequency reuse scheme which only allows the base station (BS) reusing the subcarriers in the specific regions, an improved full frequency reuse scheme is proposed to allow the BS reusing all the subcarriers in the whole BS coverage region to exploit additional multiuser diversity gain. In order to dynamically reuse the frequency resource among the BS and relay stations (RSs) to further improve the spectral efficiency, the adaptive subcarrier scheduling is introduced into the improved full frequency reuse scheme to obtain more multi-user diversity gain, which forms the proposed novel dynamic full frequency reuse scheme. Secondly, in order to further increase the system throughput, the opportunistic spectrum sharing scheme is introduced to allow the RSs selectively reusing the subcarriers among each other, which joint with the proposed dynamic full frequency reuse scheme to intelligently allocates the subcarriers originally reused by the BS and a RS to another suitable RS which can best improve the system performance after considering the additional interference. Thirdly, in order to select The optimal reusing combination scheme of BS and RSs to exploit more potential system performance, a heuristic approach based on genetic algorithm is proposed to search the optimal BS and RSs combination to opportunistically share the frequency resource. Simulation results show that the proposed dynamic full frequency reuse scheme can obtain high spectral efficiency, fine fairness and low outage probability compared to the conventional full frequency reuse scheme. Furthermore, the system performance can be improved when considering the opportunistic spectrum sharing among RSs. Finally, after adopting the genetic algorithm, the system performance can be greatly improved by the frequency reusing among the optimal BS and RSs combination.  相似文献   

4.
工作在underlay方式下的D2D(device-to-device)通信利用资源复用共享蜂窝网络中的资源,在提高频谱资源利用率、降低移动终端功耗的同时,会给已有蜂窝网络带来干扰。在保证D2D用户和蜂窝用户的服务质量的前提下,研究了蜂窝用户和D2D用户的功率控制和资源分配问题。首先引入部分频率复用(FFR)实现蜂窝用户和D2D用户之间的资源划分和复用;然后以系统吞吐量最大化为原则,建立优化目标。结合部分功率控制(FPC)的基本思想,进而提出了一种动态功率控制(DPC)策略。仿真结果表明,所提出的方案能够有效地提高多小区系统的性能。  相似文献   

5.
In multi-user OFDMA systems, adaptive resource allocation has been identified as one of the key technologies to have more flexibility and higher efficiency. Several adaptive subcarrier allocation algorithms with the objective to maximize spectral efficiency or fairness have been proposed. However, quality of service (QoS) requirement of each user may not be supported. Some algorithms considering user’s QoS requirement have been introduced, but they do not consider the case that every user’s QoS requirement cannot be guaranteed with limited resources. In this paper, we propose a maximum achievement rate allocation (MARA) algorithm as a new adaptive resource allocation algorithm. The proposed MARA algorithm has a goal to improve overall throughput while maximizing achievement rate, i.e., maximize the number of users meeting QoS requirements. In addition, we investigate that MARA is more effective when fractional frequency reuse (FFR) is adopted as a frequency partitioning scheme. Simulation results show that the MARA algorithm improves the achievement rate as well as overall throughput. Moreover, further performance gains are achieved when FFR is adopted.  相似文献   

6.
This paper focuses on the inter‐cell interference (ICI) management problem in the downlink channel for mobile broadband wireless OFDMA‐based systems. This subject is addressed from the standpoint of different interrelated resource allocation mechanisms operating in multi‐cell scenarios in order to exploit frequency and multi‐user diversity: ICI coordination/avoidance and adaptive subcarrier and power allocation. Even though these methods can be applied in a stand‐alone way, a significant performance improvement is achieved if they are jointly designed and operate in a combined basis. Several alternatives for mixed frequency and power ICI coordination schemes are proposed in this paper. Connected with a proper power mask‐based design, the potential gain of a flexible frequency sectorization solution, halfway between fractional/soft frequency reuse and pure frequency sectorization, is explored. The main objective is to outperform fractional/soft frequency reuse offering an attractive trade‐off between cell‐edge user data rates and average cell throughput. Proposals concerning ICI coordination/avoidance have been evaluated in combination with several heuristic adaptive subcarrier and power allocation algorithms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Underlaying device-to-device (D2D) communication is suggested as a promising technology for the next generation cellular networks (5G), where users in close proximity can transmit directly to one another bypassing the base station. However, when D2D communications underlay cellular networks, the potential gain from resource sharing is highly determined by how the interference is managed. In order to mitigate the resource reuse interference between D2D user equipment and cellular user equipment in a multi-cell environment, we propose a resource allocation scheme and dynamic power control for D2D communication underlaying uplink cellular network. Specifically, by introducing the fractional frequency reuse (FFR) principle into the multi-cell architecture, we divide the cellular network into inner region and outer region. Combined with resource partition method, we then formulate the optimization problem so as to maximize the total throughput. However, due to the coupled relationship between resource allocation and power control scheme, the optimization problem is NP-hard and combinational. In order to minimize the interference caused by D2D spectrum reuse, we solve the overall throughput optimization problem by dividing the original problem into two sub-problems. We first propose a heuristic resource pairing algorithm based on overall interference minimization. Then with reference to uplink fractional power control (FPC), a dynamic power control method is proposed. By introducing the interference constraint, we use a lower bound of throughput as a cost function and solve the optimal power allocation problem based on dual Lagrangian decomposition method. Simulation results demonstrate that the proposed algorithm achieves efficient performance compared with existing methods.  相似文献   

8.
针对多用户正交频分复用(OFDM)系统自适应资源分配的问题,提出了一种新的自适应子载波分配方案。子载波分配中首先通过松弛用户速率比例约束条件确定每个用户的子载波数量,然后对总功率在所有子载波间均等分配的前提下,按照最小比例速率用户优先选择子载波的方式实现子载波的分配;在功率分配中提出了一种基于人工蜂群算法和模拟退火算法(ABC-SA)相结合的新功率分配方案,并且通过ABC-SA算法的全局搜索实现了在所有用户之间的功率寻优,同时利用等功率的分配方式在每个用户下进行子载波间的功率分配,最终实现系统容量的最大化。仿真结果表明,与其他方案相比,所提方案在兼顾用户公平性的同时还能有效地提高系统的吞吐量,进而证明了所提方案的有效性。  相似文献   

9.
In this paper, new dynamic resource allocation algorithms are investigated for the downlink of multiuser multiple-input multiple-output orthogonal frequency-division multiple-access and space-division multiple-access (MU-MIMO-OFDMA/SDMA) systems. Firstly, a mathematical formulation of the optimization problem is presented with the objective of maximizing the total system throughput under the constraints of each user’s quality of service (QoS) requirement and the integer modulation orders available on each spatial subchannel. Secondly, since it is difficult to obtain the optimal solution to the joint optimization problem, the whole optimization procedure is divided into two steps, namely, the subcarrier-user scheduling and the resource allocation. In the first step, a new metric is proposed to measure the spatial compatibility of multiple users, each with multiple receive antennas, based on which a new scheduling algorithm is designed to identify the optimal sets of selected users over all subcarriers. In the second step, two dynamic resource allocation algorithms are developed to assign radio resources to the scheduled users subcarrier by subcarrier. Simulation results demonstrate that the proposed algorithms outperform the traditional allocation methods based on random scheduling scheme. Especially, the performance of the algorithm, combined with power reuse strategy, approaches closely to that of the optimal allocation method based on user selection.  相似文献   

10.
In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this end, we propose a suboptimum method with the complexity extensively reduced to the order of O(NK), where N and K denote the total number of subcarriers and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subcarrier-and-bit allocation, and spectral efficiency.  相似文献   

11.
This paper addresses resource allocation for sum throughput maximization in a sectorized two-cell downlink orthogonal frequency-division multiple-access (OFDMA) system impaired by multicell interference. It is well known that the optimization problem for this scenario is NP-hard and combinational, which is here converted to a novel sum throughput maximization problem in cellular OFDMA systems based on the intercell interference limitation. Then, three subclasses of this new problem are solved. By the first subclass, on the assumption that subcarrier allocation parameters are fixed, an algorithm for optimal power allocation is obtained. However, the optimal resource allocation requires an exhaustive search, including the optimal power allocation which cannot be implemented in practice due to its high complexity. By the second subclass, the problem is reduced to a single cell case where the intercell interference in each subcarrier is limited to a certain threshold. Based on the solution of the single cell problem, a distributed resource allocation scheme with the aim of small information exchange between the coordinated base stations is proposed. By the third subclass, the centralized resource allocation for two adjacent cells as a general problem is solved. Here, the algorithm allocates simultaneously the subcarriers and the power of the considered two cells while the resource allocation parameters of both cells are coupled mutually. The present study shows that distributed and centralized resource allocation algorithms have much less complexity than the algorithm used in the exhaustive search and can be used in practice as efficient multicell resource allocation algorithms. Simulation results illustrate the performance improvements of the proposed schemes in comparison to the schemes with no intercell interference consideration.  相似文献   

12.
在原有动态资源分配算法基础上,提出了一种基于用户速率需求的动态资源分配算法。该算法在满足用户数据速率需求和服务质量要求(QoS)的前提下,以用户公平性为原则,分步执行子载波和比特分配来降低系统总的发射功率。首先,通过比较不同子载波对用户速率的影响,引入速率影响因子,对子载波进行分配;然后为每个用户子载波分配比特,并根据用户速率需求进行比特调整。为了进一步降低系统的复杂度,提出了一种通过子载波分组来完成子载波比特分配的方法。仿真结果表明,该算法能够降低系统功耗、误码率和系统复杂度。  相似文献   

13.
现有的多小区OFDMA中继通信系统资源分配的研究主要集中在单个小区的场景下,而不考虑由相邻小区引起的共信道干扰的影响。然而,实际系统中更高的频率复用因子和较小的小区半径,会导致严重的小区间干扰。该文考虑了多小区OFDMA解码转发中继通信系统的资源分配,它是一个混合离散型优化问题,即使在单小区场景下也是NP-hard难解的。由于全局最优求解的复杂性,该文提出一种分布式的次优的资源分配算法。算法分成两步:首先基于较低的信道反馈系统开销,分配子载波以满足用户的QoS要求;然后,将功率控制问题进一步简化并分解为多个凸优化的子问题,由椭球算法不断收敛的对偶变量迭代调整各个子问题的最优求解。仿真结果表明,与参考算法相比,所提算法的系统容量和边缘用户的吞吐量性能都有很大的提升。  相似文献   

14.
This paper proposes three different dynamic cell coordination schemes using adaptive link adaptation and variable frequency reuse for OFDMA downlink cellular networks, which are composed of greedy cell coordination for flat fading channel, dynamic maximum C/I cell coordination (DMCC), and dynamic proportional fairness cell coordination (DPFCC) for frequency selective fading channel. The performances of the proposed dynamic cell coordination schemes are compared to those with no cell coordination schemes and static reuse coordination schemes using conventional proportional fair (PF) scheduling in terms of system throughput and fairness. Simulation results demonstrate that the proposed schemes allow the radio network controller (RNC) and base stations (BSs) to apply different reuse factors on each subchannel in consideration of different interference conditions of individual users so as to increase the system throughput and guarantee QoS requirement of each user on the multicell environment, where the performance of conventional OFDMA downlinks might have become degraded due to persistent interference from other cells. In frequency flat fading, the proposed dynamic schemes achieve, on average, a 1.2 times greater system throughput than no cell coordination, a 1.4 times greater static cell coordination and a 3 times greater simplified subchannel allocation scheme (SSAS) (Kim et al. in Proceedings of IEEE VTC spring’04, vol. 3, pp. 1821–1825, 2004). In frequency selective fading, the proposed scheme, DMCC, showed a 2.6 times greater throughput than that of a single reuse factor of one for all subcarriers, and DPFCC demonstrated a single reuse factor as good as one.  相似文献   

15.
A new algorithm of adaptive subcarrier allocation and bit loading (A‐SABL) is proposed for simultaneous voice and data transmission in multiuser OFDM systems. The algorithm takes advantage of the frequency diversity and the voice/data transmission requirements to dynamically assign the number of subcarriers and bits/per symbol on each subcarrier for each user in a single cell. Due to the strict delay requirement of voice service, the subcarriers with low channel gains are assigned for voice transmission with a small number of bits per symbol to guarantee its required bit‐error‐rate (BER) and transmission rate. Based on the remaining subcarriers with high channel gains and the transmission power, the throughput of data transmission is then maximized by loading as many bits as possible on each subcarrier to achieve the required transmission bit rate and BER. Theoretical analysis and simulation on the proposed algorithm show that a better performance is obtained than previously reported schemes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The paper investigates resource allocation via power control for inter‐cell interference (ICI) mitigation in an orthogonal frequency division multiple access‐based cellular network. The proposed scheme is featured by a novel subcarrier assignment mechanism at a central controller for ICI, which is further incorporated with an intelligent power control scheme. We formulate the system optimization task into a constrained optimization problem for maximizing accepted users' requirements. To improve the computation efficiency, a fast yet effective heuristic approach is introduced for divide and conquer. Simulation results demonstrate that the proposed resource allocation scheme can significantly improve the network capacity compared with a common approach by frequency reuse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This article addresses the multicast resource allocation problem with min-rate requirement constraints in orthogonal frequency division multiplexing (OFDM) systems. Due to the prohibitively high complexity for nonlinear and combinatorial optimization, the original problem is relaxed and reformulated to form a standard optimization problem. By theoretical derivation according to the Karush-Kuhn-Tucker (KKT) conditions, two propositions are presented as the necessary criteria for optimality. Furthermore, a two-step resource allocation scheme, including subcarrier assignment and power allocation, is proposed on a basis of the propositions for practical implementation. With the min-rate based multicast group order, subcarriers are assigned in a greedy fashion to maximize the capacity. When subcarrier assignment is determined, the proposed power allocation can achieve the optimal performance for the min-rate constrained capacity maximization with an acceptable complexity. Simulation results indicate that the proposed scheme approximates to optimal resource allocation obtained by exhaustive search with a negligible capacity gap, and considerably outperforms equal power distribution. Meanwhile, multicast is remarkably beneficial to resource utilization in OFDM systems.  相似文献   

18.
In order to improve the efficiency and fairness of radio resource utilization,a scheme of dynamic cooperative subcarrier and power allocation based on Nash bargaining solution(NBS-DCSPA) is proposed in the uplink of a three-node symmetric cooperative orthogonal frequency division multiple access(OFDMA) system.In the proposed NBS-DCSPA scheme,resource allocation problem is formulated as a two-person subcarrier and power allocation bargaining game(SPABG) to maximize the system utility,under the constraints of each user’s maximal power and minimal rate,while considering the fairness between the two users.Firstly,the equivalent direct channel gain of the relay link is introduced to decide the transmission mode of each subcarrier.Then,all subcarriers can be dynamically allocated to the two users in terms of their selected transmission mode.After that,the adaptive power allocation scheme combined with dynamic subcarrier allocation is optimized according to NBS.Finally,computer simulation is conducted to show the efficiency and fairness performance of the proposed NBS-DCSPA scheme.  相似文献   

19.
This paper investigates the subcarrier and power allocation problems of multi-user space-time block coded OFDM based cellular systems. Based on the tradeoff between the number of assigned subcarriers and the amount of allocated power for users, a less complexity algorithm that separates subcarrier allocation and power allocation is proposed. Simulation results show that the proposed resource allocation algorithm can improve the capacity significantly compared with static FDMA fixed allocation algorithm and the MIMO-OFDMA scheme, and the more important thing is that it can make the capacity be distributed more fairly, very close to the ideal rate constraints, among users than the scheme which maximizes the system capacity only.  相似文献   

20.
文凯  喻昉炜  周斌  张赛龙 《电视技术》2015,39(15):55-59
针对OFDMA中继网络的两跳特性,提出一种基于两跳匹配的中继网络联合资源分配算法。首先根据中继网络的两跳性建立两跳速率匹配模型,然后利用对偶分解理论将中继网络资源分配的主问题分解为:中继选择、子载波分配和功率分配三个主要的子问题并进行联合优化,同时基于中继网络两跳性在子载波分配的过程中考虑两跳子载波配对,以逼近系统最优解。最后为了保证算法的公平性,考虑子载波分配因子约束以优化子载波分配。仿真结果表明:所提算法将中继选择、两跳子载波配对与功率分配联合优化以进一步提升系统吞吐量,同时引入子载波分配因子约束,保证了算法的公平性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号