首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了一种可用于微流体操作的压电驱动式无阀微泵,设计了微泵结构并制作了样机.采用ANSYS软件进行有限元分析得到微泵的最佳工作频率.搭建了实验系统并做了相关实验,得到了微泵输出流量与驱动频率及电压的关系曲线.实验结果表明,无阀微泵具有结构简单,造价低和传输稳定等优点,适用于微流体操作.  相似文献   

2.
微流体控制系统是微机电集成系统(MEMS)一个主要分支,微泵作为微流体控制系统的重要组成部分,根据其有无阀片可分为有阀型微泵和无阀型微泵.无阀型微泵由于其结构相对简单、制造工艺要求不高,因而有着独特的发展优势.主要介绍了基于MEMS的扩张管/收缩管型无阀泵几年来在结构设计、制作工艺等方面的研究成果、现状和发展前景.  相似文献   

3.
为进一步拓展压电微泵的应用领域,以利于更好地将其集成于微流控芯片中,该文对以固态聚二甲基硅氧烷(PDMS)为泵体材料的压电微泵开展相关实验研究。通过合理设计压电振子的支承方式、阀片结构以及采用两腔串、并联结构等措施以提高压电微泵的工作性能。分别以PDMS和聚甲基丙烯酸甲酯(PMMA)为泵体材料设计制作了单腔微泵、双腔串、并联微泵,并对其工作性能进行对比性实验测试。实验证明,构造具有较好工作性能的PDMS压电微泵具有可行性,在电压90 V,频率80 Hz的情况下,PDMS双腔串联泵的输出流量达到21mL/min,输出压力达到10kPa。但与PMMA为泵体材料的压电微泵相比,PDMS压电微泵在流量、压力方面仍有近30%的差距。  相似文献   

4.
为使半球缺阻流体无阀压电泵在医疗、保健、航空航天器等领域得到更好的应用,需对半球缺阻流体无阀压电泵的工作特性进行相关的研究分析。该文首先对半球缺阻流体无阀压电泵的结构和工作原理进行了分析,并对泵内流阻特性进行理论分析;同时,采用有限元软件对半球缺阻流体无阀压电泵内部流场进行了模拟分析,结果表明,泵内流体正反向流时的流速随半球缺半径的增大呈递减趋势,泵腔内部的压强变化平缓。实际加工了样泵及多组不同半径的半球缺组并进行了实验,结果表明,泵的最大输出流量随半球缺半径增大而减小,在工作电压为150V,半球缺半径为4.0mm时,泵的最大输出流量值为121.4mL/min,验证了半球缺能作为无阀压电泵的无移动部件阀及半球缺阻流体无阀压电泵的有效性。  相似文献   

5.
面向植入式微泵在生物医疗领域的应用需求,为了提高低电压及微型化条件下微泵的输出流量,该文设计了一种双层泵腔压电无阀植入式微泵。基于压电振子的压电耦合仿真以及微泵的电-固-液三相耦合仿真,验证了双层泵腔微泵设计的有效性,并优化了结构及驱动参数。通过实验验证了耦合仿真结果的正确性,并测试了微泵的流量范围。结果表明,微泵最优设计参数:扩散角为30°,颈宽为300 μm,上层泵腔高度为100 μm。微泵的净流量随电压的增大而增大,且适用于低频驱动。实验结果表明,双层泵腔压电无阀微泵的输出流量是传统压电无阀微泵的5.38倍。  相似文献   

6.
为了实现微流控芯片的小型化、集成化,设计并制作了一种可定量连续输送微量液体的无阀压电微泵.该微泵采用双腔并联式结构,利用微机电系统(MEMS)技术在硅基片上制作了具有扩散口/喷口无阀结构的出入水口,采用压电双晶片作为驱动部件,以聚二甲基硅氧烷(PDMS)作为泵膜.测试结果表明,泵膜的厚度、工作频率和电压对微泵的输出流速均有明显的影响,在频率1100 Hz及电压80 V时,双腔体并联式无阀压电微泵的最大流速为210μL/min,约为相同结构单腔体微泵流速的1.5倍.  相似文献   

7.
一种无阀压电微泵的研究   总被引:3,自引:0,他引:3  
介绍了一种适用于微流体系统的无阀微泵。该微泵利用聚二甲基硅氧烷(PDMS)作为泵膜,利用硅各向异性腐蚀形成扩散口/喷口结构,并利用压电双晶片作为驱动部件。该微泵的制作工艺简单,使用寿命长,具有良好的液体驱动性能。对于使用15 mm长的压电双晶片作为驱动器的压电无阀微泵,在100 V6、0 Hz、占空比为1的方波驱动下,最大流速可达151μL/min。  相似文献   

8.
电磁驱动柔性振动膜无阀微泵   总被引:4,自引:0,他引:4  
提出了一种新型微泵设计方案和制作工艺,将电磁驱动器与大振幅振动膜相结合,得到流量大、易于控制的新型微泵。该微泵结构简单,由硅橡胶(聚二甲基硅氧烷PDMS橡胶)振动膜和无阀泵泵体组成,将硅加工工艺和非硅加工工艺(电镀)相结合。采用电镀和硅橡胶加工方法将振动膜直接制作在一个硅片上;用电镀和体硅加工工艺将驱动线圈和无阀泵泵体制作在另一块硅片上,然后将两个硅片键合在一起。对该微泵的性能特点正进行着更深入的研究。  相似文献   

9.
采用有限元仿真软件ANSYS/FLOTRAN对收缩/扩张型无阀微泵泵腔中流体流动的全过程进行了数值模拟和仿真分析,得到了流体在整个泵腔中的流场构形和流动特性。结果表明,泵腔结构单元的弯道效应与出/入口处流体速度分布的非线性混合将导致腔中的局域涡流现象。通过对3个简单模型的模拟计算,证明了缓冲腔的不同结构对无阀微泵的整流效率有较大影响,是泵腔结构参数优化设计不可忽视的重要环节。  相似文献   

10.
PZT压电薄膜无阀微泵的制备工艺及实验研究   总被引:4,自引:2,他引:2  
介绍了一种基于PZT薄膜的无阀压电微泵。该微泵利用聚二甲基硅氧烷(PDMS)作为泵膜,自制的压电圆型薄膜片作为驱动部件,采用收缩管/扩张管结构,压电圆型致动片和PDMS泵膜的组合可产生较大的泵腔体积改变。在对微泵制备工艺研究的基础上,对其性能进行了实验研究,结果表明:电压和频率对流速均有显著影响。在7.5 V1、80 Hz的正弦电压驱动下,该压电微泵的最大输出流速为2.05μL/min。该文制作的微泵具有流量稳定,驱动电压较低,性能稳定可靠和易控制等优点,可满足微流体系统的使用要求。  相似文献   

11.
压电双晶片驱动的压电微泵的研究   总被引:2,自引:0,他引:2  
介绍了一种基于MEMS技术的压电微泵。该微泵利用聚二甲基硅氧烷(PDMS)作为泵膜,利用双面湿法腐蚀形成被动阀,并利用压电双晶片作为驱动部件。对压电双晶片的理论变形量和压电微泵的泵腔变化量、泵腔压缩比进行了理论分析,并对其输出流量进行了测试。在100 V、20 Hz的方波驱动下,该压电微泵的最大输出流量为317μL/min。结果显示该压电微泵的制作工艺简单,具有良好的流体驱动性能。  相似文献   

12.
对一种新形式的容积型往复式压电锥形流管无阀泵,进行了流体中物质含量与泵流量特性关系的实验研究。在此基础上,把这种泵与其他泵的流体温度影响特性进行了比较,发现这种泵的温度影响特性与分类相同的活塞泵相异,与分类不同的叶轮泵相似。  相似文献   

13.
压电锥形流管无阀泵的研究—单向流动原理及泵流量   总被引:6,自引:2,他引:4  
利用流体在收缩与扩张流管中流动能耗不同的原理。借助流阻系数,具体分析了压电锥形流管无阀泵在无阀状态下,产生单向流动的原因,并解析了泵流量。同时,把上述结果与实验进行了比较,证明了理论分析的正确性。  相似文献   

14.
针对坡面腔底无阀压电泵流量小的问题,提出并研制了一种锥管坡面腔底无阀压电泵,即将锥管与坡面腔底组合式新结构作为其无移动部件阀。首先,提出了锥管坡面腔底无阀压电泵结构并分析其工作原理,对泵流量进行理论分析;同时,运用Fluent软件的动网格功能对其内部流场模拟分析。仿真结果表明,该泵具有单向流动特性,在泵腔内部产生漩涡利于液体的混合搅拌。最后,加工制作了锥管坡面腔底无阀压电泵样机,并对该泵进行了流量试验。试验结果表明,驱动电压峰值为250V,频率为5 Hz时,最大流量为25.9mL/min,证明了锥管坡面腔底无阀压电泵的有效性。  相似文献   

15.
基于电解质溶液导电的特性,研制了可测量微升级流量的高灵敏度微电解池式微流量传感器。由电解反应产生的电流大小确定流体流过的时间t,再根据流体流量Q、管道截面积S及液体通过的时间t,即可以得出流过管道的液体量。用流体仿真软件CFX对所设计的器件进行仿真,用微机械加工工艺制作出微管道,并用蒸镀及金属腐蚀的方法制作出微电极。实验表明,所制作的微电解池式微流量传感器符合仿真结果,管道中有无流体时电流变化明显。传感器的灵敏度为蠕动泵的泵速,即1.71μA.s/μL,当蠕动泵的泵速为0.5 r/min时,测得的电流值为10μА。  相似文献   

16.
压电锥形流管无阀泵的研究——气穴现象   总被引:4,自引:0,他引:4  
张建辉  王守印 《压电与声光》2001,23(6):470-472,477
分析了压电锥形流管无阀泵的气穴现象,首先发生在高速吸入过程的振动子中心区域;同时利用气穴现象阐述了流体温度变化对泵流量影响的原因;最后通过实例说明了增加流量减少气穴现象发生的具体方法,为 泵的应用设计提供了依据。  相似文献   

17.
分析了压电振子各个振动状态下锥形管无阀压电泵的输出流量,推导出流量公式,分析了并联结构下多腔体的整体输出流量与单个腔体输出流量之间关系。设计制作了两腔体、四腔体并联扁锥管无阀压电泵样机并进行了流量测试,实验测得四腔体并联结构最大输出流量可达9.2mL/min。  相似文献   

18.
无阀压电微泵的动态特性研究   总被引:1,自引:0,他引:1  
微泵作为微流控系统中的核心控制元件已成为MEMS研究的热点,现主要研究了无阀式压电微泵的工作原理及其动态工作特性。实验表明,无阀压电微泵的流速随频率呈抛物线关系变化,最佳工作频率为1250Hz。在频率固定时,微泵流速随驱动电压的升高而增加。泵膜的厚度对于微泵的性能影响很大,相同条件下,较薄的泵膜具有更高的流速,且泵膜越薄,其性能对于频率的变化越敏感。电压为50V时,微泵最大流量可达1.695μL/min。总体看来,无阀压电微泵结构简单,驱动电压较低,性能稳定可靠。  相似文献   

19.
近年来,以嵌入式微流体液冷散热技术为代表的主动热管理因其优异的散热性能而被广泛研究。然而,嵌入式微流体液冷散热技术常使用体积较大的外置泵、阀等构成流体回路,以致该技术难以应用于现有的射频微系统。该文提出了一种集成压电微泵阵列的一体化自闭环微系统热管理方法,并完成了该微系统样机的设计与研制。在常温、高温与低温环境下分别对该微系统样机供液流量及散热性能进行了测试。常温测试结果表明,在芯片热流密度为250.9 W/cm2时,芯片表面温升能控制在56 ℃以下,而集成的2×2压电微泵阵列实现了高达57 mL/min的供液流量。该技术可用于解决高功率射频微系统的高效一体化热管理问题。  相似文献   

20.
压电微泵的泵出流量由微泵结构、压电振子特性及驱动系统驱动信号的形式决定。在机械结构及材料特性确定的条件下,压电振子的驱动信号决定着微泵输出微流量的可靠性和稳定性。在分析压电微泵驱动基理的基础上,通过Ansys对驱动压电振子有效振动的一、二阶频率进行有限元模拟分析,确定了驱动信号电压幅值、频率对微泵流量的影响。以此为基础搭建压电微泵流量测试实验平台,在相同电压和频率条件下,研究了3种不同脉冲信号(正弦波、三角波、矩形波)对输出流量的影响。通过实验对理论模型进行修正,得到了压电微泵输出流量简化模型。实验验证了所得模型在正弦波、三角波、矩形波3种不同波形驱动下最大误差不超过4%,控制范围内可靠性在99.0%以上。综合比较可知,方波脉冲信号为压电微泵最佳驱动信号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号