首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The electrochemical activity towards hydrogen oxidation reaction (HOR) of a high performance carbon-supported Pt-Ru electrocatalyst (HP 20 wt.% 1:1 Pt-Ru alloy on Vulcan XC-72 carbon black) has been studied using the thin-film rotating disk electrode (RDE) technique. The physical properties of the Pt-Ru nanoparticles in the electrocatalyst were previously determined by transmission electron microscopy (TEM), high resolution TEM, fast Fourier transform (FFT), electron diffraction and X-ray diffraction (XRD). The corresponding compositional and size-shape analyses indicated that nanoparticles generally presented a 3D cubo-octahedral morphology with about 26 at.% Ru in the lattice positions of the face-centred cubic structure of Pt. The kinetics for HOR was studied in a hydrogen-saturated 0.5 M H2SO4 solution using thin-film electrodes prepared by depositing an ink of the electrocatalyst with different Nafion contents in a one-step process on a glassy carbon electrode. A maximum electrochemically active surface area (ECSA) of 119 m2 g Pt−1 was found for an optimum Nafion composition of the film of about 35 wt.%. The kinetic current density in the absence of mass transfer effects was 21 mA cm−2. A Tafel slope of 26 mV dec−1, independent of the rotation rate and Nafion content, was always obtained, evidencing that HOR behaves reversibly. The exchange current density referred to the ECSA of the Pt-Ru nanoparticles was 0.17 mA cm−2, a similar value to that previously found for analogous inks containing pure Pt nanoparticles.  相似文献   

2.
The electrochemical activity of high performance unsupported (1:1) Pt–Ru electrocatalyst in the presence of hydrogen and carbon monoxide has been studied using the thin-film rotating disk electrode (RDE) technique. The kinetic parameters of these reactions were determined in H2- and CO-saturated 0.5 M H2SO4 solutions by means of cyclic voltammetry, including CO stripping, and RDE voltammetry. Pt–Ru/Nafion inks were prepared in one step with different Nafion mass fractions, allowing determining the ionomer influence in electrocatalytic response and obtaining the kinetic current density in absence of mass-transfer effects, being 41 and 12 mA cm2 (geometrical area), for H2 and CO oxidation, respectively. These values correspond to mass activities of 1.37 and 0.40 A mgPt1 and to specific activities of 1.52 and 0.44 mA cmPt2. The Tafel analysis confirmed that hydrogen oxidation was a two-electron reversible reaction, while CO oxidation exhibited an irreversible behavior with a charge-transfer coefficient of 0.42. The kinetic results for CO oxidation are in agreement with the bifunctional theory, in which the reaction between Pt–CO and Ru–OH is the rate-determining step. The exchange current density for hydrogen reaction was 0.28 mA cm2 (active surface area), thus showing similar kinetics to those found for carbon-supported Pt and Pt–Ru electrocatalyst nanoparticles.  相似文献   

3.
The electrode with various contents of Nafion ionomer for inside and/or on the surface in the catalyst layer, respectively, was designed for proton exchange membrane fuel cell (PEMFC) electrode to investigate the effect of Nafion ionomer distribution in the catalyst layer on cell performance and improve electrode performance. The effect of Nafion ionomer on the electrode of each design was judged by a cyclic voltammetry measurement and the cell performance obtained through a single cell test using H2/O2 gases. Electrodes with different ionomer distributions for inside and on the surface in the catalyst layer, respectively, were examined. It is found that the electrode where the Nafion ionomer is impregnated on the surface of catalyst layer shows better cell performance than that where the Nafion ionomer is incorporated in the inside of catalyst layer. The best cell performance among the catalyst layers tested in this study was obtained for the electrode with 0.5 mg cm−2 of Nafion ionomer inside the catalyst layer and 1.0 mg cm−2 of Nafion ionomer on the surface of the catalyst layer together.  相似文献   

4.
The mechanism of the oxygen reduction reaction (ORR) on nanoparticulated Pt/C-Nafion electrodes prepared in one step has been studied to simulate the reaction in the cathode of a Polymer Electrolyte Fuel Cell (PEFC). The kinetic parameters have been obtained by hydrodynamic polarization in O2-saturated 0.01–1.00 M H2SO4 and temperatures in the range 25.0–50.0 °C. The ORR current density was maximum and practically independent of the ionomer fraction in the rage 10–55 wt% Nafion. The poorer proton conductivity for lower Nafion fractions and the formation of catalyst areas completely surrounded by Nafion together with adsorption of Pt sites by sulfonate groups for higher Nafion fractions, explain the minor ORR activity in these conditions. The ionomer influence on the O2 diffusion at high overpotentials for Pt/C-Nafion was negligible when the Nafion content was smaller than 20 wt%. The higher kinetic current density for Pt/C-Nafion (100 mA cm−2) with respect to smooth Pt-Nafion (40 mA cm−2), together with the smaller activation energy of the former (25 ± 4 kJ mol−1) with respect to the latter (42 ± 5 kJ mol−1) highlighted the better properties attained by the nanosize effect. A remarkable novel result is that the reaction order of H+ in HClO4 is close to unity, whereas in sulfuric acid it is significantly smaller and changes with potential, what has been related to the sulfate adsorption. The anomalous dependence of the charge transfer coefficient with temperature was then explained by the thermal change of the double layer structure and the variation of the coverage of adsorbed species on Pt. The more sensitive effect for Pt/C-Nafion than for smooth Pt-Nafion was ascribed to the stronger interaction between the components when the nanoparticles are involved.  相似文献   

5.
A Pt/WC/C catalyst is developed to increase the methanol electro-oxidation (MOR) and oxygen electro-reduction (ORR) activities of the Pt/C catalyst. Cyclic voltammetry and CO stripping results show that spill-over of H+ occurs in Pt/WC/C, and this is confirmed by comparing the desorption area values for H+ and CO. A significant reduction in the potential of the CO electro-oxidation peak from 0.81 V for Pt/C to 0.68 V for Pt/WC/C is observed in CO stripping test results. This indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support with WC. Preferential deposition of Pt on WC rather than on the carbon support is investigated by complementary analysis of CO stripping, transmission electron microscopy and concentration mapping by energy dispersive spectroscopy. The Pt/WC/C catalyst exhibits a specific activity of 170 mA m−2 for MOR. This is 42% higher than that for the Pt/C catalyst, viz., 120 mA m−2. The Pt/WC/C catalyst also exhibits a much higher current density for ORR, i.e., 0.87 mA cm−2 compared with 0.36 mA cm−2 for Pt/C at 0.7 V. In the presence of methanol, the Pt/WC/C catalyst still maintains a higher current density than the Pt/C catalyst.  相似文献   

6.
Two types of composite materials composed of Pt and WC1−x nanoparticles supported on multiwalled carbon nanotubes (MWNT) are synthesized and evaluated in terms of their electrochemical properties, especially for the hydrogen oxidation reaction (HOR). The Pt nanoparticles are prepared by reduction of H2PtCl6 with NaBH4, and the WC1−x nanoparticles by a sonochemical method with a W(CO)6 precursor. One of the composites is synthesized by forming WC1−x nanoparticles on Pt-loaded MWNT and the other by physically mixing Pt-loaded MWNT with WC1−x-loaded MWNT. The sonochemical synthesis of WC1−x on Pt-loaded MWNT forms WC1−x preferentially on Pt nanoparticles, which makes intimate contact between WC1−x and Pt nanoparticles. The cyclic voltammograms of these composite materials show evidences for H+-spill-over from Pt to WC1−x, thereby increasing the electrochemically active surface area (ECA). The composite in which WC1−x is deposited on Pt shows a remarkable increase in ECA probably because the intimate contact between WC1−x and Pt enhances the H+-spill-over. These materials exhibit enhanced HOR characteristics with Pt-specific mass activities about twice that of pure Pt nanoparticles.  相似文献   

7.
Nanoimprint lithography (NIL) was used to fabricate electrodes with high specific Pt surface areas for use in micro-fuel cell devices. The Pt catalyst structures were characterized electrochemically using cyclic voltammetry and were found to have electrochemical active surface areas (EAS) ranging from 0.8 to 1.5 m2 g−1 Pt. These NIL catalyst structures were tested in fuel cell membrane electrode assemblies (MEA) by directly embossing a Nafion 117 membrane. The features of the mold were successfully transferred to the Nafion and a 7.5 nm thin film of Pt was deposited at a wide angle to form the anode catalyst layer. The resulting MEA yielded a very high Pt utilization of 15,375 mW mg−1 Pt compared to conventionally prepared MEAs (820 mW mg−1 Pt). Embossing pattern transfer was also demonstrated for spin casted Nafion films which could be used for new applications.  相似文献   

8.
Membrane electrode assemblies (MEAs) for fuel cell applications consist of electron conductive support materials, proton conductive ionomer, and precious metal nanoparticles to enhance the catalytic activity towards H2 oxidation and O2 reduction. An optimized connection of all three phases is required to obtain a high noble metal utilization, and accordingly a good performance. Using polyaniline (PANI) as an alternative support material, the generally used ionomer Nafion® could be replaced in the catalyst layer. PANI has the advantage to be electron and proton conductive at the same time, and can be used as a catalyst support as well. In this study, a new technique building up alternating layers of PANI supported catalyst and single-walled carbon nanotubes (SWCNT) supported catalyst is introduced. Multilayers of PANI and SWCNT catalysts are used on the cathode side, whereas the anode side is composed of commercial platinum/carbon black catalyst and Nafion®, applied by an airbrush. No additional Nafion® ionomer is used for proton conductivity of the cathode. The so called spray coating method results in high power densities up to 160 mW cm−2 with a Pt loading of 0.06 mg cm−2 at the cathode, yielding a Pt utilization of 2663 mW mgPt−1. As well as PANI, supports of SWCNTs have the advantage to have a fibrous structure and additional, they provide high electron conductivity. The combination of the new technique and the fibrous 1-dimensional support materials leads to a porous 3-dimensional electrode network which could enhance the gas transport through the electrode as well as the Pt utilization. The spray coating method could be upgraded to an in-line process and is not restricted to batch production.  相似文献   

9.
The presence of CO in the H2-rich gas used as fuel for hydrogen fuel cells has a detrimental effect on PEMFC performance and durability at conventional operating conditions. This paper reports on an investigation of the effect of CO on H2 activation on a fuel cell Pt/C catalyst close to typical PEMFC operating conditions using H2-D2 exchange as a probe reaction and to measure hydrogen surface coverage. While normally limited by equilibrium in the absence of impurities on Pt at typical fuel cell operating temperatures, the presence of ppm concentrations of CO increased the apparent activation energy (Ea) of H2-D2 exchange reaction (representing H2 activation) from approximately 4.5-5.3 kcal mole−1 (Bernasek and Somorjai (1975) [24], Montano et al. (2006) [25]) (in the absence of CO) to 19.3-19.7 kcal mole−1 (in the presence of 10-70 ppm CO), similar to those reported by Montano et al. (2006) [25]. Calculations based on measurements indicate a CO surface coverage of approximately 0.55 ML at 80 °C in H2 with 70 ppm CO, which coincide very well with surface science results reported by Longwitz et al. (2004) [5]. In addition, surface coverages of hydrogen in the presence of CO suggest a limiting effect on hydrogen spillover by CO. Regeneration of Pt/C at 80 °C in H2 after CO exposure showed only a partial recovery of Pt sites. However, enough CO-free Pt sites existed to easily achieve equilibrium conversion for H2-D2 exchange. This paper establishes the baseline and methodology for a series of future studies where the additional effects of Nafion and humidity will be investigated.  相似文献   

10.
The kinetics and mechanism of the hydrogen oxidation reaction were studied in 0.5 mol dm−3 HClO4 solution on an electrode based on titanium oxide with Magneli phase structure-supported platinum electrocatalyst applied on rotation Au disk electrode. Pt catalyst was prepared by impregnation method from 2-propanol solution of Pt(NH3)2(NO2)2 and sub-stoichiometric titanium oxide powder. Sub-stiochiometric titanium oxide support was characterized by X-ray diffraction and BET techniques. The synthesized catalyst was analyzed by TEM technique. Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the hydrogen oxidation current-potential behavior on RDE over the entire potential region. The polarization RDE curves were fitted with derived polarization equations according to proposed model. The fitting shows that the HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway in the lower potential region, while the Heyrovsky-Volmer (HV) pathway is operative in the higher potential region. It is pointed out that Tafel equation that has been frequently used for the kinetics analysis in the HOR, can not reproduce the polarization curves measured with high mass-transport rates. Polarization measurements on RDE revealed that the Pt catalyst deposited on titanium suboxide support showed equal specific activity for the HOR compared to conventional carbon-supported Pt fuel cell catalyst.  相似文献   

11.
A novel Pt/zeolite–Nafion (PZN) polymer electrolyte composite membrane is fabricated for self-humidifying polymer electrolyte membrane fuel cells (PEMFCs). A uniform dispersion of Pt nanoparticles with an average size of 3 nm is achieved by ion-exchange of the zeolite HY. The Pt nanoparticles embedded in the membrane provide the catalytic sites for water generation, whereas the zeolite HY-supported Pt particles absorbs water and make it available for humidification during cell operation at elevated temperature. Compared with the performance of ordinary membranes, the performance of cells with PZN membranes is improved significantly under dry conditions. With dry H2 and O2 at 50 °C, the PZN membrane with 0.65 wt.% of Pt/zeolite (0.03 mg Pt cm−2) gives 75% of the performance obtained at 0.6 V with the humidified reactants at 75 °C. Impedance analysis reveales that an increase in charge-transfer resistance is mainly responsible for the cell performance loss operated with dry gases.  相似文献   

12.
We modified Nafion by means of chemical in situ polymerization of pyrrole monomers with platinum (Pt) precursors for an application into an electrolyte of direct methanol fuel cells (DMFCs). SEM and EPMA exhibited the presences of polypyrrole and Pt at the surface region of Nafion, after diffusing and polymerizing pyrrole monomers with Pt precursors. XPS and FT-IR spectra were used to characterize the surface of Naf–Ppy–Pt composite membranes, demonstrating that pyrrolinum groups of polypyrrole were interacted with sulfonic groups or Pt precursors (PtCl6 or PtCl4). After in situ polymerization of pyrrole monomers, the morphological reorganization of sulfonic groups in Naf–Ppy–Pt composite membranes occurred via electrostatic interaction. Thermal stability, proton conductivity, methanol permeability, and cell performance of composite membranes were analyzed by TGA, AC impedance, refractometer, and potentiostat. Naf–Ppy–Pt composite membranes had higher thermal stabilities of sulfonic groups and side chains than Nafion and Naf–Ppy as a result of the interaction between Nafion–SO3?polypyrrole–NH2+ and the presence of thermally stable Pt. The cell performance of Naf–Ppy–Pt 0 0 2 was enhanced significantly compared to that of Nafion under the specific condition, due to more reduction of methanol crossover than that of proton conductivity. Therefore, this synthetic method offers a facile way to improve physical properties of polymer electrolyte for the fabrication of advanced composite membranes.  相似文献   

13.
Chitosan (Chs) flakes were prepared from chitin materials that were extracted from the exoskeleton of Cape rock lobsters in South Africa. The Chs flakes were prepared into membranes and the Chs membranes were modified by cross-linking with H2SO4. The cross-linked Chs membranes were characterized for the application in direct methanol fuel cells. The Chs membrane characteristics such as water uptake, thermal stability, proton resistance and methanol permeability were compared to that of high performance conventional Nafion 117 membranes. Under the temperature range studied 20-60 °C, the membrane water uptake for Chs was found to be higher than that of Nafion. Thermal analysis revealed that Chs membranes could withstand temperature as high as 230 °C whereas Nafion 117 membranes were stable to 320 °C under nitrogen. Nafion 117 membranes were found to exhibit high proton resistance of 284 s cm−1 than Chs membranes of 204 s cm−1. The proton fluxes across the membranes were 2.73 mol cm−2 s−1 for Chs- and 1.12 mol cm−2 s−1 Nafion membranes. Methanol (MeOH) permeability through Chs membrane was less, 1.4 × 10−6 cm2 s−1 for Chs membranes and 3.9 × 10−6 cm2 s−1 for Nafion 117 membranes at 20 °C. Chs and Nafion membranes were fabricated into membrane electrode assemblies (MAE) and their performances measure in a free-breathing commercial single cell DMFC. The Nafion membranes showed a better performance as the power density determined for Nafion membranes of 0.0075 W cm−2 was 2.7 times higher than in the case of Chs MEA.  相似文献   

14.
To predict the durability of polymer electrolyte membranes in fuel cells, the degradation reactions of Nafion 117 films were studied as oxidation reactions with hydroxyl radicals as oxidation accelerators. The radical species were generated by the Fenton reaction between hydrogen peroxide (H2O2) and iron ions (Fe2+). The Nafion degradation kinetics were estimated by fluorine ion (F) generation. The H2O2 and Nafion degradation reactions fit a pseudo-first-order rate constant. The values of the activation energy and frequency factor are 85 kJ mol−1 and 3.97 × 108 s−1 for H2O2 decomposition in the presence of a Nafion film and 97 kJ mol−1 and 9.88 × 108 s−1 for F generation. The Nafion surface morphology became rough after reaction for 12 h; small cracks, approximately 100 μm in length, were observed at temperatures below 60 °C. These cracks connected to make larger gaps of approximately 1 mm at temperatures above 70 °C. We also found a linear relationship between H2O2 consumption and F generation. The rate constant is temperature dependent and expressed as ln(d[F]/d[decomposed H2O2]) = −19.5 × 103 K−1 + 42.8. F generated and H2O2 consumed along with the Nafion degradation conditions can be predicted using this relation.  相似文献   

15.
Codeposited PtSb/C catalysts for direct formic acid fuel cells   总被引:1,自引:0,他引:1  
Carbon supported PtSb catalysts were synthesized by codeposition of platinum and antimony on Vulcan® carbon black. X-ray diffraction (XRD) analysis revealed that the Sb was alloyed with the Pt while XPS indicated that a large fraction of the Sb was in an oxidized state, with only partial alloying. The performances of catalysts with a range of compositions were compared in a multi-anode direct formic acid fuel cell (DFAFC). A 0.29 mol fraction of Sb was found to provide the best performance with a maximum specific power output of 280 W g−1 Pt. CO stripping results indicated that the addition of Sb at this optimum level greatly suppressed both CO adsorption and H adsorption/desorption, as well as promoting oxidative stripping of CO. The results are compared with those for previously studied catalysts prepared by the reductive deposition of Sb on a carbon supported Pt catalyst.  相似文献   

16.
In this study, the effects of Nafion® ionomer content in membrane electrode assemblies (MEAs) of polymer electrolyte membrane (PEM) water electrolyser were discussed. The MEAs were prepared with a catalyst coated membrane (CCM) method. The catalysts inks with Nafion ionomer could form uniform coatings deposited on the membrane surfaces. SEM and area EDX mapping demonstrated that anode catalyst coating was uniformly distributed, with a microporous structure. The contents of Nafion ionomer were optimized to 25% for the anode and 20% for cathode. A current density of 1 A cm−2 was achieved at terminal voltage 1.586 V at 80 °C in a PEMWE single cell, with Nafion 117, Pt/C as cathode, and Ru0.7Ir0.3O2 as anode.  相似文献   

17.
18.
We investigate the sputtering deposition as a tool for preparing Polymer Electrolyte Membrane Fuel Cell (PEMFC) electrodes with improved performance and catalyst utilization. Anodes of PEMFC with ultra-low loading of Pt (0.05 mg cm−2) are developed by alternate sputtering of Pt and painting layers of carbon nanotube ink with Nafion directly on the gas diffusion layer. Sputter depositing alternate layers of Pt on carbon-Nafion layer (CNL) has increased the anode activity over single-layer Pt deposited anode due to improved porosity and the presence of Pt nanoparticles in the inner CNL. Also, we investigated the influence of Nafion content in the CNL. The optimal Nafion content giving less resistance and better performance in an anode is 29 wt.%. This is significantly lower than for standard MEA anodes, indicating sufficient interfacial contact between each CNL. We studied the anodes prepared with 50 wt.% Nafion, which revealed larger ohmic resistance and also, blocks the CNL pores reducing gas permeability. Excellent mass transfer and performance is obtained with three-layer Pt sputter deposited anode with CNL containing 29 wt.% of Nafion.  相似文献   

19.
The Pt nanoparticles have been well dispersed on electrospinning-derived carbon fibrous mats (CFMs) by using formaldehyde vapor as reducer to react with H2PtCl6·6H2O adsorbed on the CFMs at 160 °C. The prepared electrodes of Pt-CFMs have been characterized by using scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectroscopy, and the performance of the electrodes for methanol oxidation has been investigated by using cyclic voltammetry, chronoamperometry, quasi-steady state polarization and electrochemical impedance spectroscopy techniques. The results demonstrate that Pt-CFMs electrodes exhibit peak current density of 445 mA mg−1 Pt, exchange current of 235.7 μA cm−2, charge transfer resistance of 16.1 Ω cm2 and better stability during the process of methanol oxidation, which are superior to the peak current density of 194 mA mg−1 Pt, exchange current of 174.7 μA cm−2 and charge transfer resistance of 39.4 Ω cm2 obtained for commercial Pt/C supported on CFMs. It indicates that the novel process in which formaldehyde vapor is used as reducer to prepare Pt catalyst with high performance can be developed.  相似文献   

20.
Thin film Pt/TiO2 catalysts are evaluated in a polymer electrolyte electrochemical cell. Individual thin films of Pt and TiO2, and bilayers of them, were deposited directly on Nafion membranes by thermal evaporation with varying deposition order and thickness (Pt loadings of 3–6 μg cm−2). Structural and chemical characterization was performed by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Oxygen reduction reaction (ORR) polarization plots show that the presence of a thin TiO2 layer between the platinum and the Nafion increases the performance compared to a Pt film deposited directly on Nafion. Based on the TEM analysis, we attribute this improvement to a better dispersion of Pt on TiO2 compared to on Nafion and in addition, substantial proton conduction through the thin TiO2 layer. It is also shown that deposition order and the film thickness affects the performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号