首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 513 毫秒
1.
采用超声、球磨和放电等离子烧结相结合的方法制备了不同ZrB2含量(3%,5%,7%,质量分数)的新型AgZrB2触头材料,并通过电接触试验研究了触头材料的电弧侵蚀和材料转移行为。结果表明,ZrB2含量显著影响AgZrB2触头材料的耐电弧侵蚀性能。Ag-3% ZrB2触头材料具有稳定的闭合/分断燃弧能量和持续时间,表现出较好的耐电弧侵蚀性能。但是,过多的ZrB2会导致更高的闭合燃弧能量和更长的闭合燃弧时间,并且分断燃弧能量和时间会产生较大的波动,电弧侵蚀较为严重,这说明过量的ZrB2不利于提高触头材料的耐电弧侵蚀性能。此外,Ag-3% ZrB2和Ag-5% ZrB2触头材料具有相同的材料转移模式——从阳极向阴极转移,而Ag-7% ZrB2触头材料则呈现出相反的转移模式——从阴极向阳极转移。  相似文献   

2.
为了阐明SnO_2粒度大小对AgSnO_2触头材料电弧侵蚀行为的影响,采用粉末冶金法制备不同SnO_2粒度的Ag-4%SnO_2(质量分数)触头材料,对触头材料组织进行观察,并对其致密度、硬度和导电率进行测量。对Ag-4%SnO_2触头材料进行电弧侵蚀实验,确定燃弧时间和电弧侵蚀前后的质量变化,并对电弧侵蚀后触头材料表面的形貌和成分进行表征。结果表明:细小的SnO_2颗粒有助于提高Ag-4%SnO_2触头材料的致密度和硬度,但降低了其导电率。随着SnO_2粒度的减小,Ag-4%AgSnO_2触头材料的燃弧时间变短,质量损失降低,电弧侵蚀面积增大,蚀坑变浅且分散。  相似文献   

3.
分别采用球磨法、可溶性淀粉模板法和滤纸模板法制备了AgSnO2TiB2复合粉末,并利用火花等离子体烧结技术(SPS)制备了块体材料。对Ag4%SnO24%TiB2(质量分数)电接触材料的物理性能和电弧侵蚀特性进行了研究。结果表明,模板的空间限域效应有效地改善了增强相在基体中的均匀分散,提高了Ag4%SnO24%TiB2接触材料的导电率和硬度。与球磨法相比,滤纸模板法和淀粉模板法制备的Ag4%SnO24%TiB2复合材料的电导率分别增加了12.18倍和9.60倍, 显微硬度分别增加了17.10%和33.94%。滤纸模板更有利于SnO2和TiB2的均匀分散,减少集中电弧侵蚀和飞溅损失,因此具有更好的抗弧蚀性。  相似文献   

4.
采用热压法制备了不同TiB_2粒度增强的Ag-4%TiB_2(质里分数)触头材料,研升了TiB_2粒度大小对Ag-4%TiB2触头材料组织及性能的影响。利用扫描电子显微镜和激光共聚焦显微镜对Ag-4%TiB_2触头材料的组织和电弧侵蚀后的形貌进行了表征,对致密度、硬度及导电率进行了测量。结果表明:热压法有助于提高Ag-4%TiB_2触头材料的致密度。随着TiB_2粒径的减小,硬度先增大后减小,导电率不断增大。细小弥散分布的TiB_2颗粒有助于改善耐电弧侵蚀性,侵蚀面积较大,蚀坑浅,燃弧时间短。  相似文献   

5.
利用氩弧熔敷技术,在TC4合金表面原位合成了TiC-TiB2增强镍基复合材料涂层,利用SEM和XRD等方法分析了涂层的显微组织并测试了涂层的显微硬度.结果表明,熔敷组织主要由TiC,TiB2和Ti(Ni,Cr)组成,TiB2主要以棒状形式存在;在所形成的TiC-TiB2/Ti复合材料层中,TiC和TiB2颗粒分布均匀且尺寸细小;熔敷涂层由表及里组织不同;熔敷层与基体呈冶金结合,无气孔、裂纹等缺陷;涂层的显微硬度达到13.8 GPa,较基体提高了4.5倍.  相似文献   

6.
以Ag-65SnIn-8熔炼雾化粉体为原料,采用原位氧化工艺制备了Ag-60SnO2In2O3中间体粉体,与雾化纯银粉配比成Ag-92SnO2In2O3材料,通过混粉-等静压-烧结-热压-挤压技术制备Ag-92SnO2In2O3带材,再通过固相复合工艺制备所需要的Ag-92SnO2In2O3/Cu/Fe电接点材料。相对比常规氧化工艺制备的Ag-60SnO2In2O3中间体粉体制备的Ag-92SnO2In2O3/Cu/Fe电接点材料,原位氧化工艺制备的Ag-92SnO2In2O3/Cu/Fe电接点材料电阻率可达2.1μΩ.cm以下,硬度可达85~110HV;产品应用于380V,65A,功率因数0.7的电动机负载电路的热保护器中,电器寿命满足5000次分断要求,替代AgCdO/Cu/Fe电接点材料,实现环保,无镉化切换。  相似文献   

7.
选用TiO2作为触头材料的添加剂,采用粉末冶金法制备了6种不同第二相(SnO2)粒度的AgSnO2和AgSnO2/TiO2触头材料。研究了2种触头材料的润湿性和电接触性能。用座滴法测量了Ag与SnO2之间的润湿角,并表征了材料的湿润性,使用JF04C电接触触头材料测试系统对材料电接触性能进行了测试,分析了不同第二相粒度的触头材料的润湿性和电接触性能的变化规律。结果表明,当第二相粒度为100~300 nm时,2种触头材料的性能均优于其它粒度的触头材料。  相似文献   

8.
以Ti粉、B粉和Cu粉为原材料,球磨后,采用原位热压法合成Cu-15wt%TiB2复合材料。详细讨论了Cu-Ti-B体系的反应过程。通过XRD、SEM、EDS、XPS等手段,确定了Ti和B在Cu基体中原位合成了TiB2,并利用XRD制作TiB2和Cu的定标曲线,采用外标法计算出不同烧结温度下TiB2的合成率,结果表明,在一定的温度范围内,温度越高,合成率越高,在1000℃时TiB2的合成率可达99.27%。并测试Cu-1.5 wt%TiB2块状试样的维氏硬度,电导率和三点弯曲强度,分别为125.68 MPa、80.1% IACS和755.2 MPa,在100℃时的热膨胀系数和导热系数分别为9.3×10-6 /K和260 W/mK。  相似文献   

9.
以SiC、TiO2和B4C为主要原料,采用原位合成法一步烧结制备高含量TiB2/SiC复合材料,利用维氏硬度计、电子万能试验机、伏安电阻计、金相显微镜和电子扫描电镜,研究TiB2含量对TiB2/SiC复合材料力学性能、体积电阻率与显微组织的影响。结果表明:随着TiB2含量的增加,复合材料的开口气孔率先降低后增加、抗折强度和断裂韧性均先增大后减小、维氏硬度逐渐增加、电阻率先快速下降后趋于稳定、TiB2颗粒的平均粒径逐渐增大。1950 ℃烧结后,TiB2含量为40 wt% 的复合材料性能最佳,其开口气孔率、抗折强度、断裂韧性和体积电阻率分别为0.56%、412 MPa、5.77 MPa?m1/2和2.6×10-1(Ω?cm)。  相似文献   

10.
为了研究不同粒度TiB2对Ag-TiB2复合材料电弧侵蚀行为的影响,通过机械球磨和粉末冶金的方法制备不同粒度的TiB2增强Ag-4%TiB2(质量分数)复合材料。对Ag-4%TiB2复合材料的组织进行了分析,定量分析了TiB2的分布。用TDR240A单晶炉改装的设备进行真空电弧侵蚀实验,采用扫描电子显微镜(SEM)表征了电弧侵蚀后试样表面形貌,测量了电弧侵蚀前后的质量损失,采用TDS-2014双通道数字示波器记录了每次电弧的持续时间,并且对电弧侵蚀机理进行了讨论。结果显示,随着TiB2颗粒粒度的减小,TiB2颗粒在Ag基体分布更均匀,Ag-4%TiB2触头材料表现出小的质量损失,短的电弧持续时间,大的侵蚀区域以及浅的侵蚀坑。说明了细小TiB2颗粒更能有效改善Ag-4%TiB2触头材料的耐电弧侵蚀性能。  相似文献   

11.
采用化学共沉淀法和高能球磨法制备纳米Ag-12%SnO2混合粉末,用等离子喷涂法将混合粉喷涂在Cu基表面,制备纳米复合Ag/SnO2涂层。测试涂层的物理性能和真空条件下的电性能,利用SEM观察分析放电后的表面组织结构。结果表明,纳米复合Ag/SnO2涂层越厚,密度越小,电阻率越大,而硬度与SnO2分布状况有关;涂层表面平整度影响耐电压强度值的分布;纳米复合Ag/SnO2涂层的分散电弧性能好,电弧烧蚀速率小。  相似文献   

12.
祝弘滨  李辉  栗卓新 《焊接学报》2014,35(11):43-46
采用团聚烧结方法制备TiB2-Ni复合粉末喂料,并采用大气等离子喷涂和高速火焰喷涂两种喷涂方法制备了TiB2-Ni涂层,比较分析了两种涂层的显微组织、物相组成、孔隙率、硬度和断裂韧性.结果表明,与等离子喷涂相比,高速火焰喷涂制备的TiB2-Ni涂层具有更高的致密度,TiB2含量,硬度和断裂韧性.两种涂层中TiB2都没有发生明显的脱硼,氧化,但等离子喷涂过程中TiB2向金属相中发生了溶解生成了大量脆性Ni20Ti3B6相,并降低了涂层中TiB2的含量,这是涂层硬度和断裂韧性相对较低的主要原因.  相似文献   

13.
Abstract

Different amounts of TiB2 powder were added to flux cores of wear resistant hardfacing flux cored wires for the preparation of new flux cored wires. Fe–Cr–C hardfacing alloys reinforced with TiB2 were produced by arc hardfacing. The microstructure, hardness and wear resistance behaviour of the hardfacing alloys were investigated using an optical micrograph, scanning electron micrograph (SEM), X-ray diffractometer, macrohardness tester, microhardness tester and abrasive wear tester. The results showed that, among the hardfacing alloys, a new hard phase, i.e. TiC–TiB2 composite compound particles, was formed and dispersed in the primary carbides and matrix structures. The TiC–TiB2 reinforced Fe–Cr–C hardfacing alloys imparted greater hardness and better wear resistance. The presence of TiC–TiB2 hard phase particles is the main reason for the improvement in hardness and wear resistance of Fe–Cr–C hardfacing alloys.  相似文献   

14.
描述了一种制备Ag/Sn O2电接触材料(Sn O2的质量分数为12%)的新方法。首先采用共沉淀法制备Ag-Sn O2纳米复合粉体(Sn O2的质量分数为42%)并对该Ag-Sn O2纳米复合粉体进行了表征。XRD结果表明制备的复合粉体由纯立方相的Ag和四方金红石相的Sn O2组成;SEM及TEM结果表明,纳米Sn O2与纳米Ag颗粒均匀弥散分布在复合粉体中;并借助于TG-DTA热分析对纳米复合粉体前驱体的制备过程进行了分析。然后,将Ag-Sn O2纳米复合粉体与Ag粉混合,采用粉末冶金法制备成Ag/Sn O2电接触材料,并对制备的Ag/Sn O2电接触材料进行了表征。结果表明,由于纳米Sn O2在Ag基体中弥散分布,制备的材料的物理性能如密度、硬度及电导率比普通工艺制备的材料好。  相似文献   

15.
以Ag粉和自制SnO_2为原料,采用机械合金化和热挤压拉拔工艺制备Ag/SnO_2电接触材料。采用冷压焊工艺设备制备了Ag/SnO_2铆钉元件。采用X射线衍射仪(XRD)对Ag粉、自制SnO_2及Ag/SnO_2复合粉体进行物相分析;采用扫描电子显微镜(SEM)对电寿命测试前后Ag/SnO_2铆钉元件的表面形貌进行了表征。并考察了不同电气参数对Ag/SnO_2铆钉元件的燃弧特性、电弧侵蚀形貌、质量损失及其失效退化模式等特性研究。结果表明:Ag/SnO_2电接触材料在电弧作用下相比于纯Ag表现出更高的燃弧时间和燃弧能量,平均闭合与断开燃弧时间分别为51.78和25.86 ms,比纯Ag多出4.87和2.78 ms;同理,平均闭合、断开燃弧能量分别为988.14和493.85 mJ,比纯Ag高出104.93和58.76mJ;随着循环操作次数的增加,Ag/SnO_2电接触材料的总质量损失为负值,其失效退化模式主要表现为液滴飞溅与SnO_2颗粒上浮。  相似文献   

16.
Production of (B4C-nano TiB2) composite powder by chemical method was evaluated in this study. Starting materials were boron carbide, carbon, and titanium (IV) iso propoxide (TTIP). Water was used as a hydrolyser agent. TTIP was hydrolyzed with water and, consequently, amorphous Ti(OH)4 was formed. Heat-treatment of Ti(OH)4 at 100 and 850 °C led to the production of TiO2 and TiB2 phases, respectively. The effect of heat-treatment time and temperature on the phase transformation and size of the produced nano powder were investigated. The produced nano powder was characterized by XRD, SEM, and DTA. It was found that heat-treatment time and temperature have significant effects on the amount and size of the produced TiB2 powder. The data also reveal that the minimum temperature for TiB2 formation is 650 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号