首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
2.
This article aims to design an optimal interval observer for discrete linear time‐invariant systems. Particularly, the proposed design method first transforms the interval observer into a zonotopic set‐valued observer by establishing an explicit mathematical relationship between the interval observer and the zonoptopic set‐valued observer. Then, based on the established mathematical relationship, a locally optimal observer gain is designed for the interval observer via the equivalent zonotopic set‐valued observer structure and the Frobenious norm‐based size of zonotopes. Third, considering that the dynamics of the optimal interval observer becomes a discrete linear time‐varying system due to the designed time‐varying optimal gain, an optimization problem to obtain a coordinate transformation matrix and the locally optimal observer gain for the interval observer is formulated and handled. Finally, a theoretic comparison on the conservatism of the interval observer and the zonotopic set‐valued observer is made. At the end of this article, a microbial growth bioprocess is used to illustrate the effectiveness of the proposed method.  相似文献   

3.
The paper is concerned with problem of the full‐order and reduced‐order observer design for a class of fractional‐order one‐sided Lipschitz nonlinear systems. By introducing a continuous frequency distributed equivalent model and using indirect Lyapunov approach, the sufficient condition for asymptotic stability of the full‐order observer error dynamic system is presented. Furthermore, the proposed design method was extended to reduced‐order observer design for fractional‐order nonlinear systems. All the stability conditions are obtained in terms of LMI, which are less conservative than some existing ones. Finally, a numerical example demonstrates the validity of this approach.  相似文献   

4.
In this paper, an L observer design method is proposed for linear system subject to parameter uncertainty and bounded disturbance. The proposed L observer, which satisfies a peak‐to‐peak disturbances attenuation performance, is designed to overbound the estimation error. Moreover, sufficient conditions for the design of L observer are derived and expressed in terms of linear matrix inequalities (LMIs). The novelty of the proposed method is that we develop an L observer that not only can attenuate bounded disturbance but also provides an upper bound of estimation error norm. Simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper discusses the observer‐based finite‐time stabilization for discrete‐time switched singular systems with quadratically inner‐bounded nonlinear terms. Firstly, based on the Luenberger‐like observer, by using the average dwell time approach, sufficient conditions are proposed to make closed‐loop systems be regular, be causal, as having a unique solution, and be uniformly finite‐time bounded. Then, a new linear matrix inequality sufficient condition for the existence of an observer‐based controller is obtained by using certain matrix decoupling techniques, and the controller is designed. In this paper, the conditions proposed not only give the observer‐based controller design methods but also guarantee the existence and uniqueness of solution for the systems. Since the quadratically inner‐bounded nonlinearities are more general than Lipschitz nonlinearities and one‐sided Lipschitz nonlinearities, compared with previous works, the proposed controller design methods in this paper are also more general than the existing ones. Finally, numerical examples are provided to illustrate the effectiveness of the methods proposed in this paper.  相似文献   

6.
This paper investigates the problem of state observer design for a class of nonlinear uncertain dynamical systems with interval time‐varying delay and the one‐sided Lipschitz condition. By constructing the novel Lyapunov–Krasovskii functional while utilizing the free‐weighting matrices approach, the one‐sided Lipschitz condition and the quadratic inner‐bounded condition, novel sufficient conditions, which guarantee the observer error converge asymptotically to zero, are established for a class of nonlinear dynamical systems with interval time‐varying delay in terms of the linear matrix inequalities. The computing method for observer gain matrix is given. Finally, two examples illustrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper focuses on the fault estimation observer design problem in the finite‐frequency domain for a class of Lipschitz nonlinear multiagent systems subject to system components or actuator fault. First, the relative output estimation error is defined based on the directed communication topology of multiagent systems, and an observer error system is obtained by connecting adaptive fault estimation observer and the state equation of the original system. Then, sufficient conditions for the existence of the fault estimation observer are obtained by using a generalized Kalman‐Yakubovich‐Popov lemma and properties of the matrix trace, which guarantee that the observer error system satisfies robustness performance in the finite‐frequency domain. Meanwhile, the pole assignment method is used to configure the poles of the observer error system in a certain area. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

8.
In this paper, the sliding mode observers design techniques for MIMO and as a simple example for SISO systems are systematically advanced as a first purpose. Design parameters are selected such that on the defined switching surface always is generated asymptotically stable sliding mode. Moreover, observer state error dynamics is globally robustly asymptotically stable. Then, advanced design techniques are generalized to the design of a new modification of sliding mode observers for uncertain MIMO systems with time‐delay. Robust sliding and global asymptotic stability conditions are derived by using Lyapunov‐Krasovskii V‐functional method. By these conditions observer parameters are designed such that an asymptotically stable sliding mode always is generated in observer and observer state error dynamics is robustly globally asymptotically stable. The main results are formulated in terms of Lyapunov matrix equations and inequalities. Design example for AV‐8A Harrier VTOL aircraft with simulation results using MATLAB‐Simulink show the effectiveness of proposed design approaches.  相似文献   

9.
This paper focuses on the adaptive observer design for nonlinear discrete‐time MIMO systems with unknown time‐delay and nonlinear dynamics. The delayed states involved in the system are arguments of a nonlinear function and only the estimated delay is utilized. By constructing an appropriate Lyapunov–Krasovskii function, the delay estimation error is considered in the observer parameter design. The proposed method is then extended to the system with a nonlinear output measurement equation and the delayed dynamics. With the help of a high‐order neural network (HONN), the requirement for a precise system model, the linear‐in‐the‐parameters (LIP) assumption of the delayed states, the Lipschitz or norm‐boundedness assumption of unknown nonlinearities are removed. A novel converse Lyapunov technical lemma is also developed and used to prove the uniform ultimate boundedness of the proposed observer. The effectiveness of the proposed results is verified by simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper studies the problem of fault estimation and accommodation for a class of nonlinear time‐varying delay systems using adaptive fault diagnosis observer (AFDO). A novel fast adaptive fault estimation algorithm that does not need the derivative of the output vector is proposed to enhance the performance of fault estimation. Meanwhile, a delay‐dependent criteria is obtained based on free weighting matrix method with the purpose of reducing the conservatism of the AFDO design. On the basis of fault estimation, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of matrix inequality, we derive sufficient conditions for the existence of the adaptive observer and fault‐tolerant controller. Simulation results are presented to illustrate the efficiency of the proposed method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
Based on interval and invariant set computation, an interval version of the Luenberger state observer for uncertain discrete‐time linear systems is proposed in this work. This new interval observer provides a punctual estimation of the state vector and guaranteed bounds on the estimation error. An off‐line and an on‐line approach to characterize, in a guaranteed way, the estimation error are introduced. Compared with the existing approaches, the proposed interval observer design method is not restrictive in terms of required assumptions, complexity, and on‐line computation time. Furthermore, the convergence issue of the estimation error is well established and to reduce the conservatism of the estimated state enclosure induced by the bounded additive state disturbance and noise measurement, an H method to compute the optimal observer gain is proposed. The performance of the proposed state estimation approach are highlighted on different illustrative examples.  相似文献   

12.
13.
This paper deals with the issue of reliable control for discrete‐time switched linear systems with faulty actuators by utilizing a multiple Lyapunov functions method and estimate state‐dependent switching technique. A solvability condition for the reliable control problem is given in terms of matrix inequality with an extra matrix variable. This condition allows the reliable control problem for each individual subsystem to be unsolvable. For each subsystem of such a switched system, we design an observer and an observer‐based controller. A switching rule depending on the observer state is designed which, together with the controllers, can guarantee the stability of the closed‐loop switched system for all admissible actuator failures. The observers, controllers, and switching law are explicitly computed by solving linear matrix inequalities (LMIs). The proposed design method is illustrated by two numerical examples.  相似文献   

14.
In this paper, a fault estimation problem for linear system is considered. A novel sth‐order observer is proposed to cope with this problem. The advantages of the proposed observer are that (i) the observer matching condition is not required to be satisfied in practical systems, (ii) if the sth derivative of fault is unknown and/or unbounded and the (s + 1)th derivative of fault f (t) is naught or bounded, it can simultaneously estimate the state and fault. The sufficient existence condition of the proposed observer is given by a linear matrix inequality. In addition, a feasible method to obtain the design parameters is discussed. Finally, two numerical examples are presented to illustrate the effectiveness of the proposed method.  相似文献   

15.
This paper addresses the distributed observer‐based consensus problem of second‐order multi‐agent systems via sampled data. Firstly, for the case of fixed topology, a velocity‐independent distributed control law is proposed by designing a distributed observer to estimate the unavailable velocity, then a sufficient and necessary condition of consensus on design parameters and sampling period is obtained by using the matrix analysis method. Secondly, for the case of stochastically switching topology, a sufficient and necessary condition of mean square consensus is also proposed and proven, and an algorithm is provided to design the parameters in the consensus protocol. Two simulation examples are given to illustrate the effectiveness of the proposed consensus algorithms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper focuses on proposing novel conditions for stability analysis and stabilization of the class of nonlinear fractional‐order systems. First, by considering the class of nonlinear fractional‐order systems as a feedback interconnection system and applying small‐gain theorem, a condition is proposed for L2‐norm boundedness of the solutions of these systems. Then, by using the Mittag‐Leffler function properties, we show that satisfaction of the proposed condition proves the global asymptotic stability of the class of nonlinear fractional‐order systems with fractional order lying in (0.5, 1) or (1.5, 2). Unlike the Lyapunov‐based methods for stability analysis of fractional‐order systems, the new condition depends on the fractional order of the system. Moreover, it is related to the H‐norm of the linear part of the system and it can be transformed to linear matrix inequalities (LMIs) using fractional‐order bounded‐real lemma. Furthermore, the proposed stability analysis method is extended to the state‐feedback and observer‐based controller design for the class of nonlinear fractional‐order systems based on solving some LMIs. In the observer‐based stabilization problem, we prove that the separation principle holds using our method and one can find the observer gain and pseudostate‐feedback gain in two separate steps. Finally, three numerical examples are provided to demonstrate the advantage of the novel proposed conditions with the previous results.  相似文献   

17.
This paper looks at the problem of controlling an incinerator that burns waste gas to generate power. The system is modelled as a standard utility boiler using one known and one unknown (waste) fuel input. Standard linear controls have trouble dealing with large variations in the waste input, and in practice boiler shutdowns can occur. In this work, a nonlinear adaptive control design accounts for uncertainty in the plant parameters, and an adaptive neural‐network estimates the effect of the waste input. Since a linear observer design cannot guarantee convergence away from a set point, a novel nonlinear observer design provides estimates of the states. The observer design uses fictitious states to estimate nonlinear terms in the observer dynamics. The analysis guarantees Lyapunov stability, thus the observer bounds depend on the accuracy of the observer initial conditions. Simulation results show the proposed method can obtain accurate performance and stability, improving over results obtained withproportional–integral control.  相似文献   

18.
This paper addresses the distributed observer‐based leader‐follower attitude consensus control problem for multiple rigid bodies. An intrinsic distributed observer is proposed for each follower to estimate the leader's trajectory, which is only available to a subset of followers. The proposed observer can guarantee that the estimated attitude evolves on rotation matrices all the time, and it provides us with a simple way to design the attitude consensus control law. The dynamics of rigid bodies and distributed observer are both modeled directly on rotation matrices, so that the singularity and ambiguity can be avoided. Furthermore, adopting the idea of disturbance observer on vector space, a gyro bias observer on the rotation matrices is proposed. Based on the distributed observer, three types of attitude consensus control law are proposed, which are respectively on the basis of full‐state, biased angular velocity, and external disturbance combined with biased angular velocity. Finally, the SimMechanics experiments are provided to illustrate effectiveness of the proposed theoretical results.  相似文献   

19.
In order to achieve high‐performance speed regulation for sensorless interior permanent magnet synchronous motors (IPMSMS), a robust backstepping sensorless control is presented in this paper. Firstly, instead of a real mechanical sensor, a robust terminal sliding mode observer is used to provide the rotor position. Then, a new super‐twisting algorithm (STA) based observer is designed to obtain estimates of load torque and speed. The proposed observer ensures finite‐time convergence, maintains robust to uncertainties, and eliminates the common assumption of constant or piece‐wise constant load torque. Finally, a sensorless scheme is designed to realize speed control despite parameter uncertainties, by combining the robust backstepping control with sliding mode actions and the presented sliding mode observers. The stability of the observer and controller are verified by using Lyapunov's second method to determine the design gains. Simulation results show the effectiveness of the proposed approach.  相似文献   

20.
In this paper a novel sliding‐mode control algorithm, based on the differential geometry state‐co‐ordinates transformation method, is proposed to control motor torque directly. Non‐linear feedback linearization theory is employed to decouple the control of rotor flux magnitude and motor torque. The advantages of this method are: (1) The rotor flux and the generated torque can be accurately controlled. (2) Robustness with respect to matched and mismatched uncertainties is obtained. Additionally, a varying continuous control term is proposed. As a result, chattering is eliminated without sacrificing robustness and precision. The control strategy is based on all motor states being available. In practice the rotor fluxes are not usually measurable, and a sliding‐mode observer is derived to estimate the rotor flux. The observer is designed to possess invariant dynamic modes which can be assigned independently to achieve the desired performance. Furthermore, it can be shown that the observer is robust against model uncertainties and measurement noise. Simulation and practical results are presented to confirm the characteristics of the proposed control law and rotor flux observer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号